document.write( "Question 756279: write the standard form of the equation of the parabola with its vertex (0,0)and focus at (0,5). \n" ); document.write( "
Algebra.Com's Answer #467956 by DSMLMD(16)\"\" \"About 
You can put this solution on YOUR website!
Vertex (0,0) and Focus at (0,5)
\n" ); document.write( "

\n" ); document.write( "Vertex:
\n" ); document.write( "(0,0)
\n" ); document.write( "(a,b)
\n" ); document.write( "

\n" ); document.write( "Focus Point:
\n" ); document.write( "(0,5)
\n" ); document.write( "(0,p)
\n" ); document.write( "

\n" ); document.write( "we get p = 5
\n" ); document.write( "

\n" ); document.write( "So because the point of focus located in y-coordinate, so the parabola equation is:
\n" ); document.write( "

\n" ); document.write( "(x - a)^2 = 4p(y - b)
\n" ); document.write( "(x - 0)^2 = 4(5)(y - 0)
\n" ); document.write( "x^2 = 20y
\n" ); document.write( "

\n" ); document.write( "The parabola equation is x^2 = 20y or x^2 - 20y = 0
\n" ); document.write( "
\n" );