document.write( "Question 767173: Find the domain of the function.\r
\n" ); document.write( "\n" ); document.write( "h(x) = ln[(x^2)/(x-4)]\r
\n" ); document.write( "\n" ); document.write( "What I have tried on the problem so far is as follows:\r
\n" ); document.write( "\n" ); document.write( "[(x^2)/(x-4)] > 0\r
\n" ); document.write( "\n" ); document.write( "(x-4) * [(x^2)/(x-4)] > 0 * (x-4)\r
\n" ); document.write( "\n" ); document.write( "x^3 - 4x^2 > 0\r
\n" ); document.write( "\n" ); document.write( "x^2 (x-4) > 0
\n" ); document.write( "-(x-4) -(x-4)\r
\n" ); document.write( "\n" ); document.write( "x^2 > -x-4
\n" ); document.write( "+x +x\r
\n" ); document.write( "\n" ); document.write( "x^2 +x > -4
\n" ); document.write( "

Algebra.Com's Answer #467464 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You started out ok. The argument of the log function must be strictly greater than zero.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But consider just your numerator: \ 0\ \forall\ x\ \not =\ 0\">. So far, we have to exclude 0.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But the denominator is positive so long as \ 4\">, a restriction that includes \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hence the domain is \ 4\right\}\">\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note the strictly greater than relationship because the value 4 itself must be excluded to avoid division by zero.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "Egw to Beta kai to Sigma
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "
\n" ); document.write( "
\n" );