document.write( "Question 766811: c)(i) Write the quadratic expression x^2-34x+9 in completed square form\r
\n" ); document.write( "\n" ); document.write( "(ii) use the completed square form from part (c) (i) to solve the equation x^2-34x+9=0, leaving your answer in exact (surd) form\r
\n" ); document.write( "\n" ); document.write( "(iii) use the completed square form from part (c)(i)to write down the vertex of the parabola y=x^2-34x+9
\n" ); document.write( "

Algebra.Com's Answer #467231 by MathLover1(20849)\"\" \"About 
You can put this solution on YOUR website!
c)(i) Write the quadratic expression \"x%5E2-34x%2B9\" in completed square form\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: Completing the Square to Get a Quadratic into Vertex Form

\n" ); document.write( "
\n" ); document.write( " \"y=1+x%5E2-34+x%2B9\" Start with the given equation
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y-9=1+x%5E2-34+x\" Subtract \"9\" from both sides
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y-9=1%28x%5E2-34x%29\" Factor out the leading coefficient \"1\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Take half of the x coefficient \"-34\" to get \"-17\" (ie \"%281%2F2%29%28-34%29=-17\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now square \"-17\" to get \"289\" (ie \"%28-17%29%5E2=%28-17%29%28-17%29=289\")
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y-9=1%28x%5E2-34x%2B289-289%29\" Now add and subtract this value inside the parenthesis. Doing both the addition and subtraction of \"289\" does not change the equation
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y-9=1%28%28x-17%29%5E2-289%29\" Now factor \"x%5E2-34x%2B289\" to get \"%28x-17%29%5E2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y-9=1%28x-17%29%5E2-1%28289%29\" Distribute
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y-9=1%28x-17%29%5E2-289\" Multiply
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y=1%28x-17%29%5E2-289%2B9\" Now add \"9\" to both sides to isolate y
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y=1%28x-17%29%5E2-280\" Combine like terms
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now the quadratic is in vertex form \"y=a%28x-h%29%5E2%2Bk\" where \"a=1\", \"h=17\", and \"k=-280\". Remember (h,k) is the vertex and \"a\" is the stretch/compression factor.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Check:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notice if we graph the original equation \"y=1x%5E2-34x%2B9\" we get:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"graph%28500%2C500%2C-10%2C10%2C-10%2C10%2C1x%5E2-34x%2B9%29\" Graph of \"y=1x%5E2-34x%2B9\". Notice how the vertex is (\"17\",\"-280\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notice if we graph the final equation \"y=1%28x-17%29%5E2-280\" we get:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"graph%28500%2C500%2C-10%2C10%2C-10%2C10%2C1%28x-17%29%5E2-280%29\" Graph of \"y=1%28x-17%29%5E2-280\". Notice how the vertex is also (\"17\",\"-280\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So if these two equations were graphed on the same coordinate plane, one would overlap another perfectly. So this visually verifies our answer.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(ii) use the completed square form from part (c) (i) to solve the equation \"x%5E2-34x%2B9=0\", leaving your answer in exact (surd) form\r
\n" ); document.write( "\n" ); document.write( "\"%28x-17%29%5E2-280+=+0\"\r
\n" ); document.write( "\n" ); document.write( "(iii) use the completed square form from part (c)(i)to write down the vertex of the parabola \"y=x%5E2-34x%2B9\"\r
\n" ); document.write( "\n" ); document.write( "\"y=%28x-17%29%5E2-280+\"....compare to \"y=%28x-h%29%5E2%2Bk\" and you will see that \"h=17\" and \"k=-280\" which means\r
\n" ); document.write( "\n" ); document.write( "the vertex of the parabola is at (\"17\",\"-280\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since the graph above is not good, I will make another one for you to see it is a parabola:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+600%2C+600%2C+-50%2C+50%2C+-330%2C+50%2C%28x-17%29%5E2-280+%29+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );