document.write( "Question 760503: write the standard equation of the parabola with the following characteristics\r
\n" );
document.write( "\n" );
document.write( "focus (-2,1)
\n" );
document.write( "directrix x=3 \n" );
document.write( "
Algebra.Com's Answer #467017 by DSMLMD(16)![]() ![]() You can put this solution on YOUR website! Focus point at (-2,1) and directrix x = 3 \n" ); document.write( " \n" ); document.write( "directrix \n" ); document.write( "x = a - p \n" ); document.write( "3 = a - p .... (1) \n" ); document.write( " \n" ); document.write( "focus point \n" ); document.write( "F((p+a),b) \n" ); document.write( "F(-2,1) \n" ); document.write( " \n" ); document.write( "b = 1 \n" ); document.write( "p + a = -2 .... (2) \n" ); document.write( " \n" ); document.write( "eliminate (1) and (2) we get \n" ); document.write( " \n" ); document.write( "p = -2.5 \n" ); document.write( "a = 0.5 \n" ); document.write( " \n" ); document.write( "because the directrix located at x-coordinate, the parabola equation is: \n" ); document.write( " \n" ); document.write( "(y-b)^2 = 4p(x-a) \n" ); document.write( "(y-1)^2 = 4(-2.5)(x-0.5) \n" ); document.write( "(y-1)^2 = -10(x-0.5) \n" ); document.write( " \n" ); document.write( "so, the parabola equation is (y-1)^2 = -10(x-0.5)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |