document.write( "Question 760503: write the standard equation of the parabola with the following characteristics\r
\n" ); document.write( "\n" ); document.write( "focus (-2,1)
\n" ); document.write( "directrix x=3
\n" ); document.write( "

Algebra.Com's Answer #467017 by DSMLMD(16)\"\" \"About 
You can put this solution on YOUR website!
Focus point at (-2,1) and directrix x = 3
\n" ); document.write( "

\n" ); document.write( "directrix
\n" ); document.write( "x = a - p
\n" ); document.write( "3 = a - p .... (1)
\n" ); document.write( "

\n" ); document.write( "focus point
\n" ); document.write( "F((p+a),b)
\n" ); document.write( "F(-2,1)
\n" ); document.write( "

\n" ); document.write( "b = 1
\n" ); document.write( "p + a = -2 .... (2)
\n" ); document.write( "

\n" ); document.write( "eliminate (1) and (2) we get
\n" ); document.write( "

\n" ); document.write( "p = -2.5
\n" ); document.write( "a = 0.5
\n" ); document.write( "

\n" ); document.write( "because the directrix located at x-coordinate, the parabola equation is:
\n" ); document.write( "

\n" ); document.write( "(y-b)^2 = 4p(x-a)
\n" ); document.write( "(y-1)^2 = 4(-2.5)(x-0.5)
\n" ); document.write( "(y-1)^2 = -10(x-0.5)
\n" ); document.write( "

\n" ); document.write( "so, the parabola equation is (y-1)^2 = -10(x-0.5)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );