document.write( "Question 766197: What is the focus, vertex and directrix of the parabola
\n" ); document.write( "-2x^2+16x+24y-224=0....
\n" ); document.write( "

Algebra.Com's Answer #466765 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
What is the focus, vertex and directrix of the parabola
\n" ); document.write( "-2x^2+16x+24y-224=0..
\n" ); document.write( "complete the square
\n" ); document.write( "-2(x^2-8x+16)+24y=224-32
\n" ); document.write( "-2(x-4)^2=-24y+192
\n" ); document.write( "divide by -2
\n" ); document.write( "(x-4)^2=12y-96
\n" ); document.write( "(x-4)^2=12(y-8)
\n" ); document.write( "This is a parabola that opens upward.
\n" ); document.write( "Its basic form of equation: (x-h)^2=4p(y-k), (h,k)+(x,y) coordinates of the vertex
\n" ); document.write( "For given parabola:
\n" ); document.write( "vertex: (4,8)
\n" ); document.write( "axis of symmetry: x=4
\n" ); document.write( "4p=12
\n" ); document.write( "p=3
\n" ); document.write( "focus: (4,11) (p-units above vertex on the axis of symmetry)
\n" ); document.write( "directrix: y=5 (p-units below vertex on the axis of symmetry)\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );