document.write( "Question 766197: What is the focus, vertex and directrix of the parabola
\n" );
document.write( "-2x^2+16x+24y-224=0.... \n" );
document.write( "
Algebra.Com's Answer #466765 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! What is the focus, vertex and directrix of the parabola \n" ); document.write( "-2x^2+16x+24y-224=0.. \n" ); document.write( "complete the square \n" ); document.write( "-2(x^2-8x+16)+24y=224-32 \n" ); document.write( "-2(x-4)^2=-24y+192 \n" ); document.write( "divide by -2 \n" ); document.write( "(x-4)^2=12y-96 \n" ); document.write( "(x-4)^2=12(y-8) \n" ); document.write( "This is a parabola that opens upward. \n" ); document.write( "Its basic form of equation: (x-h)^2=4p(y-k), (h,k)+(x,y) coordinates of the vertex \n" ); document.write( "For given parabola: \n" ); document.write( "vertex: (4,8) \n" ); document.write( "axis of symmetry: x=4 \n" ); document.write( "4p=12 \n" ); document.write( "p=3 \n" ); document.write( "focus: (4,11) (p-units above vertex on the axis of symmetry) \n" ); document.write( "directrix: y=5 (p-units below vertex on the axis of symmetry)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |