document.write( "Question 765187: Find the following four terms of the sequence given the following recursive formula:
\n" ); document.write( "a(1)=8 a(2)=-3 and a(n)=2a(n-1)+a(n-2) for n≥3
\n" ); document.write( "

Algebra.Com's Answer #466040 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\r\n" );
document.write( "a(n) = 2a(n-1)+a(n-2)  for n≥3\r\n" );
document.write( "\r\n" );
document.write( "a(1) = 8\r\n" );
document.write( "a(2) = -3\r\n" );
document.write( "a(3) = 2a(3-1)+a(3-2) = 2a(2)+a(1) = 2(-3)+8 = -6+8 = 2\r\n" );
document.write( "a(4) = 2a(4-1)+a(4-2) = 2a(3)+a(2) = 2(2)+(-3) = 4-3 = 1\r\n" );
document.write( "a(5) = 2a(5-1)+a(5-2) = 2a(4)+a(3) = 2(1)+2 = 2+2 = 4\r\n" );
document.write( "a(6) = 2a(6-1)+a(6-2) = 2a(5)+a(4) = 2(4)+1 = 8+1 = 9\r\n" );
document.write( "a(7) = 2a(7-1)+a(7-2) = 2a(6)+a(5) = 2(9)+4 = 18+4 = 22\r\n" );
document.write( "a(8) = 2a(8-1)+a(8-2) = 2a(7)+a(6) = 2(22)+9 = 44+9 = 53\r\n" );
document.write( "a(9) = 2a(9-1)+a(9-2) = 2a(8)+a(7) = 2(53)+22 = 106+22 = 128\r\n" );
document.write( "a(10) = 2a(10-1)+a(10-2) = 2a(9)+a(8) = 2(128)+53 = 256+53 = 309\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );