document.write( "Question 764843: Use Gauss's approach to find the following sums(do not use formulas).\r
\n" ); document.write( "\n" ); document.write( "a. 1+2+3+4+...+99
\n" ); document.write( "b. 1+3+5+7+...+97\r
\n" ); document.write( "\n" ); document.write( "a. The sum of the sequence is?
\n" ); document.write( "b. the sum of the sequence is?
\n" ); document.write( "

Algebra.Com's Answer #465760 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "a. 1+2+3+4+...+99\r
\n" ); document.write( "\n" ); document.write( "\"1%2B99+=+100\"
\n" ); document.write( "\"99%2F2=49.5\"\r
\n" ); document.write( "\n" ); document.write( "\"sum=100%2A49.5=+4950\"\r
\n" ); document.write( "\n" ); document.write( "b. 1+3+5+7+...+97\r
\n" ); document.write( "\n" ); document.write( "first find the sum 1+2+3+4+...+97\r
\n" ); document.write( "\n" ); document.write( "\"1%2B97+=+98\"
\n" ); document.write( "\"98%2F2=49\"\r
\n" ); document.write( "\n" ); document.write( "\"sum=98%2A49=+4802\" \r
\n" ); document.write( "\n" ); document.write( "since you have only odd numbers, it will be half of \"4802\" which is \"2401\"\r
\n" ); document.write( "\n" ); document.write( "so, the sum of 1+3+5+7+...+97 is \"2401\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );