document.write( "Question 764687: Quetion);- 8 out of every 10 persons who contract a certain viral infection can recover. If a group of 7 people become infected, what is the probability that exactly 3 people will recover from the infection? \n" ); document.write( "
Algebra.Com's Answer #465624 by Theo(13342)![]() ![]() You can put this solution on YOUR website! p = .8 = probability that a person who gets the disease will recover. \n" ); document.write( "q = .2 = probability that a person who gets the disease will not recover. \n" ); document.write( "q = 1 - p \n" ); document.write( "p(x out of n will recover) = nCx * p^x * q^(n-x) \n" ); document.write( "n = 7 \n" ); document.write( "x = 3 \n" ); document.write( "nCx = combination formula of n! / (x! * (n-x)!) \n" ); document.write( "formula becomes: \n" ); document.write( "7C3 * .8^3 * .2^4 = 35 * .512 * .0016 = .028672 \n" ); document.write( "this is the probability that exactly 3 will recover. \n" ); document.write( "the formula used is the binomial probability formula. \n" ); document.write( "the probability of exactly 0,1,2,3,4,5,6,7 recovering is shown below: \n" ); document.write( " \r\n" ); document.write( "n = 7 \r\n" ); document.write( "p = 0.8 \r\n" ); document.write( "q = 0.2\r\n" ); document.write( " \r\n" ); document.write( "x p^x q^(n-x) nCx p(x)\r\n" ); document.write( "\r\n" ); document.write( "0 1 0.0000128 1 0.0000128\r\n" ); document.write( "1 0.8 0.000064 7 0.0003584\r\n" ); document.write( "2 0.64 0.00032 21 0.0043008\r\n" ); document.write( "3 0.512 0.0016 35 0.028672 *****\r\n" ); document.write( "4 0.4096 0.008 35 0.114688\r\n" ); document.write( "5 0.32768 0.04 21 0.2752512\r\n" ); document.write( "6 0.262144 0.2 7 0.3670016\r\n" ); document.write( "7 0.2097152 1 1 0.2097152\r\n" ); document.write( " \r\n" ); document.write( " total probability = 1 \r\n" ); document.write( "\r\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |