document.write( "Question 65711: A garden area is 30ft long and 20ft wide. A path of uniform width is set around the edge. If the remaining garden area is 400ft^2, what is the width of the path?\r
\n" );
document.write( "\n" );
document.write( "Gosh I am so lost on this one, thank you \n" );
document.write( "
Algebra.Com's Answer #46410 by ptaylor(2198)![]() ![]() You can put this solution on YOUR website! A garden area is 30ft long and 20ft wide. A path of uniform width is set around the edge. If the remaining garden area is 400ft^2, what is the width of the path?\r \n" ); document.write( "\n" ); document.write( "Let x= width of path \n" ); document.write( "garden area=(l)(w)=(30)(20)=600 sq ft \n" ); document.write( "remaining garden area=400 sq ft \n" ); document.write( " \n" ); document.write( "Length of the remaining garden area =(30-2x) ft \n" ); document.write( "Width of remaining garden area = (20-2x) ft, so\r \n" ); document.write( "\n" ); document.write( "Eq(1) (30-2x)(20-2x)=400 expanding the factors, we have: \n" ); document.write( "600-100x+4x^2=400 divide by 4 \n" ); document.write( "150-25x+x^2=100 subtract 100 from each side \n" ); document.write( "x^2-25x+50=0 factors are: \n" ); document.write( "Using the quadratic formula(x=(-b+or-sqrt(b^2-4ac))/2a we get\r \n" ); document.write( "\n" ); document.write( "x=(25+or-sqrt(625-200))/2 \n" ); document.write( "x=(25+or-sqrt(425))/2 \n" ); document.write( "x=(25-20.6)/2 \n" ); document.write( "x=2.2 ft \n" ); document.write( "x=(25+20.6)/2 \n" ); document.write( "x=22.8 ft Not a solution. It yields negative lengths and widths\r \n" ); document.write( "\n" ); document.write( "Substitute x=2.2ft in (1) and we get \n" ); document.write( "(30-4.4)(20-4.4)=400 \n" ); document.write( "(25.6)(15.6)=400 \n" ); document.write( "399+=400\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hope this helps----ptaylor\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |