document.write( "Question 65711: A garden area is 30ft long and 20ft wide. A path of uniform width is set around the edge. If the remaining garden area is 400ft^2, what is the width of the path?\r
\n" ); document.write( "\n" ); document.write( "Gosh I am so lost on this one, thank you
\n" ); document.write( "

Algebra.Com's Answer #46410 by ptaylor(2198)\"\" \"About 
You can put this solution on YOUR website!
A garden area is 30ft long and 20ft wide. A path of uniform width is set around the edge. If the remaining garden area is 400ft^2, what is the width of the path?\r
\n" ); document.write( "\n" ); document.write( "Let x= width of path
\n" ); document.write( "garden area=(l)(w)=(30)(20)=600 sq ft
\n" ); document.write( "remaining garden area=400 sq ft
\n" ); document.write( "
\n" ); document.write( "Length of the remaining garden area =(30-2x) ft
\n" ); document.write( "Width of remaining garden area = (20-2x) ft, so\r
\n" ); document.write( "\n" ); document.write( "Eq(1) (30-2x)(20-2x)=400 expanding the factors, we have:
\n" ); document.write( "600-100x+4x^2=400 divide by 4
\n" ); document.write( "150-25x+x^2=100 subtract 100 from each side
\n" ); document.write( "x^2-25x+50=0 factors are:
\n" ); document.write( "Using the quadratic formula(x=(-b+or-sqrt(b^2-4ac))/2a we get\r
\n" ); document.write( "\n" ); document.write( "x=(25+or-sqrt(625-200))/2
\n" ); document.write( "x=(25+or-sqrt(425))/2
\n" ); document.write( "x=(25-20.6)/2
\n" ); document.write( "x=2.2 ft
\n" ); document.write( "x=(25+20.6)/2
\n" ); document.write( "x=22.8 ft Not a solution. It yields negative lengths and widths\r
\n" ); document.write( "\n" ); document.write( "Substitute x=2.2ft in (1) and we get
\n" ); document.write( "(30-4.4)(20-4.4)=400
\n" ); document.write( "(25.6)(15.6)=400
\n" ); document.write( "399+=400\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hope this helps----ptaylor\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );