document.write( "Question 762329: the square root of 4y+16 - the square root of y-5 equals 6 \n" ); document.write( "
Algebra.Com's Answer #463887 by smiths(2)\"\" \"About 
You can put this solution on YOUR website!
√(4y + 12) - √(y - 6) = 6\r
\n" ); document.write( "\n" ); document.write( "Square both sides:\r
\n" ); document.write( "\n" ); document.write( "[√(4y + 12) - √(y - 6)]² = 6²
\n" ); document.write( "4y + 12 + (y - 6) - 2√(4y + 12)√(y - 6) = 36 . . By perfect square trinomial, expand [√(4y + 12) - √(y - 6)]².
\n" ); document.write( "4y + 12 + y - 6 - 2√(4y + 12)√(y - 6) = 36
\n" ); document.write( "5y + 6 - 2√(4y + 12)√(y - 6) = 36\r
\n" ); document.write( "\n" ); document.write( "Then, bring 5y + 6 to the right:\r
\n" ); document.write( "\n" ); document.write( "-2√(4y + 12)√(y - 6) = 36 - (5y + 6)
\n" ); document.write( "-2√(4y + 12)√(y - 6) = 36 - 5y - 6
\n" ); document.write( "-2√(4y + 12)√(y - 6) = 30 - 5y\r
\n" ); document.write( "\n" ); document.write( "Square both sides again!\r
\n" ); document.write( "\n" ); document.write( "(-2√(4y + 12)√(y - 6))² = (30 - 5y)²
\n" ); document.write( "4(4y + 12)(y - 6) = 900 - 300y + 25y²
\n" ); document.write( "4(4y² - 12y - 72) = 900 - 300y + 25y²
\n" ); document.write( "16y² - 48y - 288 = 900 - 300y + 25y²\r
\n" ); document.write( "\n" ); document.write( "Bring 16y² - 48y - 288 to the right.\r
\n" ); document.write( "\n" ); document.write( "0 = 900 - 300y + 25y² - (16y² - 48y - 288)
\n" ); document.write( "0 = 9y² - 252y + 1188\r
\n" ); document.write( "\n" ); document.write( "By factoring, we obtain:\r
\n" ); document.write( "\n" ); document.write( "0 = 9(y² - 28y + 132)
\n" ); document.write( "0 = 9(y - 22)(y - 6)\r
\n" ); document.write( "\n" ); document.write( "Finally, by zero-product identity:\r
\n" ); document.write( "\n" ); document.write( "y - 22 = 0 and y - 6 = 0
\n" ); document.write( "y = {22,6}\r
\n" ); document.write( "\n" ); document.write( "it may help u ......!!!
\n" ); document.write( "
\n" );