document.write( "Question 762329: the square root of 4y+16 - the square root of y-5 equals 6 \n" ); document.write( "
Algebra.Com's Answer #463887 by smiths(2)![]() ![]() ![]() You can put this solution on YOUR website! √(4y + 12) - √(y - 6) = 6\r \n" ); document.write( "\n" ); document.write( "Square both sides:\r \n" ); document.write( "\n" ); document.write( "[√(4y + 12) - √(y - 6)]² = 6² \n" ); document.write( "4y + 12 + (y - 6) - 2√(4y + 12)√(y - 6) = 36 . . By perfect square trinomial, expand [√(4y + 12) - √(y - 6)]². \n" ); document.write( "4y + 12 + y - 6 - 2√(4y + 12)√(y - 6) = 36 \n" ); document.write( "5y + 6 - 2√(4y + 12)√(y - 6) = 36\r \n" ); document.write( "\n" ); document.write( "Then, bring 5y + 6 to the right:\r \n" ); document.write( "\n" ); document.write( "-2√(4y + 12)√(y - 6) = 36 - (5y + 6) \n" ); document.write( "-2√(4y + 12)√(y - 6) = 36 - 5y - 6 \n" ); document.write( "-2√(4y + 12)√(y - 6) = 30 - 5y\r \n" ); document.write( "\n" ); document.write( "Square both sides again!\r \n" ); document.write( "\n" ); document.write( "(-2√(4y + 12)√(y - 6))² = (30 - 5y)² \n" ); document.write( "4(4y + 12)(y - 6) = 900 - 300y + 25y² \n" ); document.write( "4(4y² - 12y - 72) = 900 - 300y + 25y² \n" ); document.write( "16y² - 48y - 288 = 900 - 300y + 25y²\r \n" ); document.write( "\n" ); document.write( "Bring 16y² - 48y - 288 to the right.\r \n" ); document.write( "\n" ); document.write( "0 = 900 - 300y + 25y² - (16y² - 48y - 288) \n" ); document.write( "0 = 9y² - 252y + 1188\r \n" ); document.write( "\n" ); document.write( "By factoring, we obtain:\r \n" ); document.write( "\n" ); document.write( "0 = 9(y² - 28y + 132) \n" ); document.write( "0 = 9(y - 22)(y - 6)\r \n" ); document.write( "\n" ); document.write( "Finally, by zero-product identity:\r \n" ); document.write( "\n" ); document.write( "y - 22 = 0 and y - 6 = 0 \n" ); document.write( "y = {22,6}\r \n" ); document.write( "\n" ); document.write( "it may help u ......!!! \n" ); document.write( " |