document.write( "Question 759620: Find the standard form of the equation of the hyperbola with the given characteristics\r
\n" ); document.write( "\n" ); document.write( "1: vertices (0,+/-7) foci (0,+/-9)\r
\n" ); document.write( "\n" ); document.write( "2: vertices (0,+/-3) foci (0,+/-6)
\n" ); document.write( "

Algebra.Com's Answer #462113 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Find the standard form of the equation of the hyperbola with the given characteristics
\n" ); document.write( "1: vertices (0,+/-7) foci (0,+/-9)
\n" ); document.write( "hyperbola has a vertical transverse axis
\n" ); document.write( "Its standard form of equation: \"%28x-h%29%5E2%2Fa%5E2-%28y-k%29%5E2%2Fb%5E2=1\" , (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given hyperbola:
\n" ); document.write( "center: (0,0)
\n" ); document.write( "a=7 (distance from center to vertices)
\n" ); document.write( "a^2=49
\n" ); document.write( "c=9 (distance from center to vertices)
\n" ); document.write( "c^2=81
\n" ); document.write( "c^2=a^2+b^2
\n" ); document.write( "b^2=c^2-a^2=81-49=32
\n" ); document.write( "Equation of given hyperbola:
\n" ); document.write( "\"x%5E2%2F49-y%5E2%2F32=1\"
\n" ); document.write( "..
\n" ); document.write( "2: vertices (0,+/-3) foci (0,+/-6)
\n" ); document.write( "hyperbola has a vertical transverse axis
\n" ); document.write( "Its standard form of equation: \"%28x-h%29%5E2%2Fa%5E2-%28y-k%29%5E2%2Fb%5E2=1\" , (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given hyperbola:
\n" ); document.write( "center: (0,0)
\n" ); document.write( "a=3 (distance from center to vertices)
\n" ); document.write( "a^2=9
\n" ); document.write( "c=6 (distance from center to vertices)
\n" ); document.write( "c^2=36 a^2+b^2
\n" ); document.write( "b^2=c^2-a^2=36-9=25
\n" ); document.write( "Equation of given hyperbola:
\n" ); document.write( "\"x%5E2%2F9-y%5E2%2F25=1\"
\n" ); document.write( "
\n" );