document.write( "Question 759620: Find the standard form of the equation of the hyperbola with the given characteristics\r
\n" );
document.write( "\n" );
document.write( "1: vertices (0,+/-7) foci (0,+/-9)\r
\n" );
document.write( "\n" );
document.write( "2: vertices (0,+/-3) foci (0,+/-6) \n" );
document.write( "
Algebra.Com's Answer #462113 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the standard form of the equation of the hyperbola with the given characteristics \n" ); document.write( "1: vertices (0,+/-7) foci (0,+/-9) \n" ); document.write( "hyperbola has a vertical transverse axis \n" ); document.write( "Its standard form of equation: \n" ); document.write( "For given hyperbola: \n" ); document.write( "center: (0,0) \n" ); document.write( "a=7 (distance from center to vertices) \n" ); document.write( "a^2=49 \n" ); document.write( "c=9 (distance from center to vertices) \n" ); document.write( "c^2=81 \n" ); document.write( "c^2=a^2+b^2 \n" ); document.write( "b^2=c^2-a^2=81-49=32 \n" ); document.write( "Equation of given hyperbola: \n" ); document.write( " \n" ); document.write( ".. \n" ); document.write( "2: vertices (0,+/-3) foci (0,+/-6) \n" ); document.write( "hyperbola has a vertical transverse axis \n" ); document.write( "Its standard form of equation: \n" ); document.write( "For given hyperbola: \n" ); document.write( "center: (0,0) \n" ); document.write( "a=3 (distance from center to vertices) \n" ); document.write( "a^2=9 \n" ); document.write( "c=6 (distance from center to vertices) \n" ); document.write( "c^2=36 a^2+b^2 \n" ); document.write( "b^2=c^2-a^2=36-9=25 \n" ); document.write( "Equation of given hyperbola: \n" ); document.write( " |