document.write( "Question 759456: The graph of a quadratic function passes through B(4,6), and the zeros of the function are 5 and 6. Write an equation of the graph in general form.\r
\n" );
document.write( "\n" );
document.write( "This question makes no sense. If the x-intercepts are 5 and 6 how can there be a point (4,6) and still be a quadratic function. HELP please. \n" );
document.write( "
Algebra.Com's Answer #462040 by josgarithmetic(39617)![]() ![]() ![]() You can put this solution on YOUR website! Generally you would have y=ax^2+bx+c, and you are given the two zeros of the parabola. Try to narrow some of the equation using them.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Point (5,0): \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Point (6,0): \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also you were given point B(4,6): \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "NOW you have a system of three equations in three unknowns (yes, they should be constants but currently you do not know their values) of a, b, and c. \n" ); document.write( "--------------------- \n" ); document.write( "SYSTEM: \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "---------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Can you take the rest of the solution process from there?\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Omitting the steps in solving that system, I found: \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "EQUATION: \n" ); document.write( "{solution checks as correct}. \n" ); document.write( " |