document.write( "Question 759256: Write cos^4(3x) in terms of cosines all to the 1st power. FIND LCD & SIMPLIFY!\r
\n" );
document.write( "\n" );
document.write( "I GOT cos^4(3x) as (cos^2(3x))^2. By solving cos(2x) = 2cos^2(x) - 1 for cos^2(x), we get cos^2(x) = 1/2+1/2*cos(2x). Thus, cos^2(3x) = 1/2+1/2*cos(6x), and (cos^2(3x))^2 = 1/4 + 1/2*cos(6x) + 1/4*cos^2(6x). Next, cos^2(6x) = 1/2+1/2*cos(12x), so 1/4 + 1/2*cos(6x) + 1/4*cos^2(6x) = 1/4 + 1/2*cos(6x) + 1/8 + 1/8*cos(12x) = 3/8 + 1/2*cos(6x) + 1/8*cos(12x).\r
\n" );
document.write( "\n" );
document.write( "BUT IM NOT SURE PLEASE HELP!!! \n" );
document.write( "
Algebra.Com's Answer #461953 by Alan3354(69443) You can put this solution on YOUR website! Write cos^4(3x) in terms of cosines all to the 1st power. \n" ); document.write( "----------------- \n" ); document.write( "= \n" ); document.write( "from Wikipedia half-angle formula \n" ); document.write( " \n" ); document.write( " |