document.write( "Question 759256: Write cos^4(3x) in terms of cosines all to the 1st power. FIND LCD & SIMPLIFY!\r
\n" ); document.write( "\n" ); document.write( "I GOT cos^4(3x) as (cos^2(3x))^2. By solving cos(2x) = 2cos^2(x) - 1 for cos^2(x), we get cos^2(x) = 1/2+1/2*cos(2x). Thus, cos^2(3x) = 1/2+1/2*cos(6x), and (cos^2(3x))^2 = 1/4 + 1/2*cos(6x) + 1/4*cos^2(6x). Next, cos^2(6x) = 1/2+1/2*cos(12x), so 1/4 + 1/2*cos(6x) + 1/4*cos^2(6x) = 1/4 + 1/2*cos(6x) + 1/8 + 1/8*cos(12x) = 3/8 + 1/2*cos(6x) + 1/8*cos(12x).\r
\n" ); document.write( "\n" ); document.write( "BUT IM NOT SURE PLEASE HELP!!!
\n" ); document.write( "

Algebra.Com's Answer #461953 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
Write cos^4(3x) in terms of cosines all to the 1st power.
\n" ); document.write( "-----------------
\n" ); document.write( "= \"%283+%2B+4cos%286x%29+%2B+cos%2812x%29%29%2F8\"
\n" ); document.write( "from Wikipedia half-angle formula
\n" ); document.write( "
\n" ); document.write( "
\n" );