document.write( "Question 756834: Can someone please explain this equation to me? and i also believe that the answer would be b.
\n" );
document.write( "a=sin^-1 -x then a=
\n" );
document.write( "
\n" );
document.write( "a. cos^-1 1/sqrt 1-x^2
\n" );
document.write( "b. tan^-1 -x/sqrt 1-x^2
\n" );
document.write( "c. pi/2-cos 1/-x
\n" );
document.write( "d. tan^-1 sqrt 1+x^2/-x \n" );
document.write( "
Algebra.Com's Answer #460607 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! a=sin^-1 -x then a=\r \n" ); document.write( "\n" ); document.write( "a. cos^-1 1/sqrt 1-x^2 \n" ); document.write( "b. tan^-1 -x/sqrt 1-x^2 \n" ); document.write( "c. pi/2-cos 1/-x \n" ); document.write( "d. tan^-1 sqrt 1+x^2/-x \n" ); document.write( ".. \n" ); document.write( "a=sin^-1 -x \n" ); document.write( "This expression reads: \n" ); document.write( "an angle (a) whose sin=-x \n" ); document.write( "In other words, \n" ); document.write( "sin(a)=-x \n" ); document.write( "cos(a)=sqrt(1-sin^2(a)=sqrt(1-x^2) \n" ); document.write( "tan(a)=sin(a)/cos(a)=-x/sqrt(1-x^2) \n" ); document.write( "this reads: \n" ); document.write( "angle(a) whose tangent=-x/sqrt(1-x^2) (ans b.) \n" ); document.write( "Remember: the inverse is always an angle \n" ); document.write( " \n" ); document.write( " |