document.write( "Question 752162: identify the vertex focus axis of symmetry and directrix\r
\n" ); document.write( "\n" ); document.write( "x=-2y2-24y-76
\n" ); document.write( "

Algebra.Com's Answer #457901 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
identify the vertex focus axis of symmetry and directrix
\n" ); document.write( "x=-2y2-24y-76
\n" ); document.write( "complete the square
\n" ); document.write( "x=-2(y^2+12y+36)+72-76
\n" ); document.write( "x=-2(y+6)^2-4
\n" ); document.write( "-2(y+6)^2=(x+4)
\n" ); document.write( "(y+6)^2=(-1/2)(x+4)
\n" ); document.write( "This is an equation of a parabola that opens leftward.
\n" ); document.write( "Its basic form: (y-k)^2=-4p(x-h)
\n" ); document.write( "For given equation:
\n" ); document.write( "vertex:(-4,-6)
\n" ); document.write( "axis of symmetry: y=-6
\n" ); document.write( "4p=1/2
\n" ); document.write( "p=1/8
\n" ); document.write( "directrix: x=31/8 (p-distance to the right of vertex on the axis of symmetry)
\n" ); document.write( "
\n" );