document.write( "Question 752544: use log[2]3=(1.5850) and log[2]2=1 to approximate the value of the expression of log[2]9216 \n" ); document.write( "
Algebra.Com's Answer #457825 by Theo(13342) You can put this solution on YOUR website! 9216 = 2^10 * 3^2\r \n" ); document.write( "\n" ); document.write( "log(2,(9216) = log(2,(2^10 * 3^2)\r \n" ); document.write( "\n" ); document.write( "log (2,(2^10 * 3^2) = log(2,2^10) + log(2,3^2)\r \n" ); document.write( "\n" ); document.write( "log(2,2^10) + log(2,3^2) = 10 * log(2,2) + 2 * log(2,3)\r \n" ); document.write( "\n" ); document.write( "10 * log(2,2) + 2 * log(2,3) = 10 * 1 + 2 * 1.5850 = 13.17.\r \n" ); document.write( "\n" ); document.write( "you can use your calculator to confirm.\r \n" ); document.write( "\n" ); document.write( "log(2,9216) = log(10,9216) / log(10,2) = LOG(9216) / LOG(2) = 13.l69925\r \n" ); document.write( "\n" ); document.write( "that's pretty close (13.17 / 13.169925 = 1.000005695.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |