document.write( "Question 751858: 3 ( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log n , find n.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #457457 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! 3 ( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log n , find n. \n" ); document.write( ". \n" ); document.write( "3 ( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log n \n" ); document.write( "3log 5 - 3log 3 - ( log 5 - 2 log 6 ) = 2 - log n \n" ); document.write( "log 5^3 - log 3^3 - ( log 5 - 2 log 6 ) = 2 - log n \n" ); document.write( "log 125 - log 27 - ( log 5 - 2 log 6 ) = 2 - log n \n" ); document.write( "log 125 - log 27 - ( log 5 - log 6^2 ) = 2 - log n \n" ); document.write( "log 125 - log 27 - ( log 5 - log 36 ) = 2 - log n \n" ); document.write( "log 125 - log 27 - log 5 + log 36 = 2 - log n \n" ); document.write( "log 125/27 - log 5 + log 36 = 2 - log n \n" ); document.write( "log 125/(27*5) + log 36 = 2 - log n \n" ); document.write( "log (125*36)/(27*5) = 2 - log n \n" ); document.write( "log (125*36)/(27*5) = 2 - log n \n" ); document.write( "log (125*36)/(27*5) - 2 = -log n \n" ); document.write( "-[log (125*36)/(27*5) - 2] = log n \n" ); document.write( "10^(-[log (125*36)/(27*5) - 2]) = n \n" ); document.write( "10^(-[log (4500)/(27*5) - 2]) = n \n" ); document.write( "10^(-[log 900/27 - 2]) = n \n" ); document.write( "10^(-[log 100/3 - 2]) = n \n" ); document.write( "10^(-[1.52287874528 - 2]) = n \n" ); document.write( "10^(0.4771212547196624372950) = n \n" ); document.write( "3 = n \n" ); document.write( " \n" ); document.write( " |