document.write( "Question 749158: sin[tan^-1(5/12)-sin^-1(-1)]\r
\n" ); document.write( "\n" ); document.write( "I need to solve this equation for 0\n" ); document.write( "\n" ); document.write( "I am familiar with the Product to sum formulas but I do not see where that would play in here because of the arctan(5/12). I know that tan is sin/cos. I tried to see if I can maybe solve it knowing that much, but I cannot seem to figure it out. \r
\n" ); document.write( "\n" ); document.write( "Any help or feedback would be great! Thank you! \r
\n" ); document.write( "\n" ); document.write( "Mayra
\n" ); document.write( "

Algebra.Com's Answer #455864 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
sin[tan^-1(5/12)-sin^-1(-1)]
\n" ); document.write( "let x=the angle whose tan=5/12
\n" ); document.write( "tan(x)=5/12
\n" ); document.write( "hypotenuse=13 (5-12-13 right triangle)
\n" ); document.write( "sin(x)=5/13
\n" ); document.write( "cos(x)=12/13
\n" ); document.write( "..
\n" ); document.write( "let y=the angle whose sin=-1
\n" ); document.write( "sin(y)=-1
\n" ); document.write( "cos(y)=√(1-sin^2(y))=0
\n" ); document.write( "...
\n" ); document.write( "sin[tan^-1(5/12)-sin^-1(-1)]=sin(x-y)=sin(x)cos(y)-cos(x)sin(y)=5/13*0-12/13*(-1)=12/13
\n" ); document.write( "..
\n" ); document.write( "Check: (with calculator)
\n" ); document.write( "tan(x)=5/12
\n" ); document.write( "x=22.62º
\n" ); document.write( "sin(y) =-1
\n" ); document.write( "y=270º
\n" ); document.write( "x-y=(22.62-270)=-247.38 (in Q3)
\n" ); document.write( "reference angle:67.38º
\n" ); document.write( "sin(x+y)=sin(67.38º)≈0.923..
\n" ); document.write( "exact value=12/13≈0.923..
\n" ); document.write( "
\n" ); document.write( "
\n" );