document.write( "Question 746309: find an equations for the conic section that satisfies the given conditions. Hyperbola, foci (2,0), (2,8) asymptose y=3+1/2x y=5-1/2x
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #455024 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! find an equations for the conic section that satisfies the given conditions. Hyperbola, foci (2,0), (2,8) asymptose y=3+1/2x y=5-1/2x \n" ); document.write( "***\r \n" ); document.write( "\n" ); document.write( "Given hyperbola has a vertical transverse axis (y-coordinates of foci change but x-coordinates do not) \n" ); document.write( "Its standard form of equation: \n" ); document.write( ".. \n" ); document.write( "center: (2,4) \n" ); document.write( ".. \n" ); document.write( "c=4 (distance from center to foci \n" ); document.write( "c^2=16 \n" ); document.write( ".. \n" ); document.write( "given slopes of asymptotes=±1/2=a/b (for hyperbolas with vertical transverse axis) \n" ); document.write( "a/b=1/2 \n" ); document.write( "b=2a \n" ); document.write( ".. \n" ); document.write( "c^2=a^2+b^2 \n" ); document.write( "c^2=a^2+4a^2=5a^2 \n" ); document.write( "5a^2=16 \n" ); document.write( "a^2=16/5 \n" ); document.write( "a=4/√5 \n" ); document.write( "b^2=64√5 \n" ); document.write( ".. \n" ); document.write( "Equation of given hyperbola: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |