document.write( "Question 746695: 4z^2-28z+49
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #454416 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4z%5E2-28z%2B49\", we can see that the first coefficient is \"4\", the second coefficient is \"-28\", and the last term is \"49\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"49\" to get \"%284%29%2849%29=196\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"196\" (the previous product) and add to the second coefficient \"-28\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"196\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"196\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,7,14,28,49,98,196\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-7,-14,-28,-49,-98,-196\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"196\".\r
\n" ); document.write( "\n" ); document.write( "1*196 = 196
\n" ); document.write( "2*98 = 196
\n" ); document.write( "4*49 = 196
\n" ); document.write( "7*28 = 196
\n" ); document.write( "14*14 = 196
\n" ); document.write( "(-1)*(-196) = 196
\n" ); document.write( "(-2)*(-98) = 196
\n" ); document.write( "(-4)*(-49) = 196
\n" ); document.write( "(-7)*(-28) = 196
\n" ); document.write( "(-14)*(-14) = 196\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-28\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11961+196=197
2982+98=100
4494+49=53
7287+28=35
141414+14=28
-1-196-1+(-196)=-197
-2-98-2+(-98)=-100
-4-49-4+(-49)=-53
-7-28-7+(-28)=-35
-14-14-14+(-14)=-28
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-14\" and \"-14\" add to \"-28\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-14\" and \"-14\" both multiply to \"196\" and add to \"-28\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-28z\" with \"-14z-14z\". Remember, \"-14\" and \"-14\" add to \"-28\". So this shows us that \"-14z-14z=-28z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4z%5E2%2Bhighlight%28-14z-14z%29%2B49\" Replace the second term \"-28z\" with \"-14z-14z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284z%5E2-14z%29%2B%28-14z%2B49%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2z%282z-7%29%2B%28-14z%2B49%29\" Factor out the GCF \"2z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2z%282z-7%29-7%282z-7%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282z-7%29%282z-7%29\" Combine like terms. Or factor out the common term \"2z-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282z-7%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4z%5E2-28z%2B49\" factors to \"%282z-7%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4z%5E2-28z%2B49=%282z-7%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282z-7%29%5E2\" to get \"4z%5E2-28z%2B49\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );