document.write( "Question 744624: Given that sin A= -4/5 where A is in quadrant 3 and sin B= 12/13 where B is in quadrant 2. Find:\r
\n" );
document.write( "\n" );
document.write( "A. cosA\r
\n" );
document.write( "\n" );
document.write( "B. cosB\r
\n" );
document.write( "\n" );
document.write( "C. sec(A-B)\r
\n" );
document.write( "\n" );
document.write( "D. tan(2A)\r
\n" );
document.write( "\n" );
document.write( "E. cos(B/2)\r
\n" );
document.write( "\n" );
document.write( "Help! \n" );
document.write( "
Algebra.Com's Answer #453509 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Given that sin A= -4/5 where A is in quadrant 3 and sin B= 12/13 where B is in quadrant 2. Find: \n" ); document.write( "A. cosA= \n" ); document.write( ".. \n" ); document.write( "B. cosB = \n" ); document.write( ".. \n" ); document.write( "C. sec(A-B)=1/cos(A-B) \n" ); document.write( "cos(A-B)=cosA cosB+SinA sinB=-3/5*-5/13+(-4/5)*12/13=15/65-48/65=-33/65 \n" ); document.write( "sec(A-B)=-65/33 \n" ); document.write( ".. \n" ); document.write( "D. tan(2A)=(2tanA)/(1-tan^2A) \n" ); document.write( "tanA=sinA/cosA=(-4/5)/(-3/5)=4/3 \n" ); document.write( "tan(2A)=(8/3)/(1-16/9)=(8/3)/(-7/9)=-72/21 \n" ); document.write( ".. \n" ); document.write( "E. cos(B/2)= |