document.write( "Question 743475: How do I verify the trig identity? \r
\n" );
document.write( "\n" );
document.write( "(1+sinx)^2/cos^2(x) = (1 + sinx)/ (1-sinx ) \n" );
document.write( "
Algebra.Com's Answer #452893 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Pick one side and transform it into the other. Once you've chosen a side, you cannot alter the other side at all. I'm going to pick the right side and transform it into the left side.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To do that, multiply top and bottom of the fraction by 1+sin(x) and simplify\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "[ (1 + sin(x))^2 ]/(cos^2(x)) = (1+sin(x))/(1-sin(x))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "[ (1 + sin(x))^2 ]/(cos^2(x)) = [(1+sin(x))(1+sin(x))]/[(1-sin(x))(1+sin(x))]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "[ (1 + sin(x))^2 ]/(cos^2(x)) = [(1+sin(x))^2]/[1^2-sin^2(x)]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "[ (1 + sin(x))^2 ]/(cos^2(x)) = [(1+sin(x))^2]/[1-sin^2(x)]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "[ (1 + sin(x))^2 ]/(cos^2(x)) = [(1+sin(x))^2]/(cos^2(x))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Both sides are now identical, so this verifies the identity. \n" ); document.write( " |