document.write( "Question 742464: 5z^2+19z-4 \n" ); document.write( "
Algebra.Com's Answer #452484 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"5z%5E2%2B19z-4\", we can see that the first coefficient is \"5\", the second coefficient is \"19\", and the last term is \"-4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"5\" by the last term \"-4\" to get \"%285%29%28-4%29=-20\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-20\" (the previous product) and add to the second coefficient \"19\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-20\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-20\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-20\".\r
\n" ); document.write( "\n" ); document.write( "1*(-20) = -20
\n" ); document.write( "2*(-10) = -20
\n" ); document.write( "4*(-5) = -20
\n" ); document.write( "(-1)*(20) = -20
\n" ); document.write( "(-2)*(10) = -20
\n" ); document.write( "(-4)*(5) = -20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"19\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-201+(-20)=-19
2-102+(-10)=-8
4-54+(-5)=-1
-120-1+20=19
-210-2+10=8
-45-4+5=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"20\" add to \"19\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"20\" both multiply to \"-20\" and add to \"19\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"19z\" with \"-z%2B20z\". Remember, \"-1\" and \"20\" add to \"19\". So this shows us that \"-z%2B20z=19z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5z%5E2%2Bhighlight%28-z%2B20z%29-4\" Replace the second term \"19z\" with \"-z%2B20z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285z%5E2-z%29%2B%2820z-4%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%285z-1%29%2B%2820z-4%29\" Factor out the GCF \"z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%285z-1%29%2B4%285z-1%29\" Factor out \"4\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z%2B4%29%285z-1%29\" Combine like terms. Or factor out the common term \"5z-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5z%5E2%2B19z-4\" factors to \"%28z%2B4%29%285z-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"5z%5E2%2B19z-4=%28z%2B4%29%285z-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28z%2B4%29%285z-1%29\" to get \"5z%5E2%2B19z-4\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );