document.write( "Question 741856: I have to factor completely\r
\n" ); document.write( "\n" ); document.write( "10-19c+6c^2
\n" ); document.write( "I am having issues trying to find a common factor... \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #452172 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
There is no common factor (other than 1), so you have do to this\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"10-19c%2B6c%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "is the same as \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6c%5E2-19c%2B10\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"6c%5E2-19c%2B10\", we can see that the first coefficient is \"6\", the second coefficient is \"-19\", and the last term is \"10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"6\" by the last term \"10\" to get \"%286%29%2810%29=60\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"60\" (the previous product) and add to the second coefficient \"-19\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"60\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"60\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,10,12,15,20,30,60\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"60\".\r
\n" ); document.write( "\n" ); document.write( "1*60 = 60
\n" ); document.write( "2*30 = 60
\n" ); document.write( "3*20 = 60
\n" ); document.write( "4*15 = 60
\n" ); document.write( "5*12 = 60
\n" ); document.write( "6*10 = 60
\n" ); document.write( "(-1)*(-60) = 60
\n" ); document.write( "(-2)*(-30) = 60
\n" ); document.write( "(-3)*(-20) = 60
\n" ); document.write( "(-4)*(-15) = 60
\n" ); document.write( "(-5)*(-12) = 60
\n" ); document.write( "(-6)*(-10) = 60\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-19\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1601+60=61
2302+30=32
3203+20=23
4154+15=19
5125+12=17
6106+10=16
-1-60-1+(-60)=-61
-2-30-2+(-30)=-32
-3-20-3+(-20)=-23
-4-15-4+(-15)=-19
-5-12-5+(-12)=-17
-6-10-6+(-10)=-16
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-4\" and \"-15\" add to \"-19\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-4\" and \"-15\" both multiply to \"60\" and add to \"-19\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-19c\" with \"-4c-15c\". Remember, \"-4\" and \"-15\" add to \"-19\". So this shows us that \"-4c-15c=-19c\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6c%5E2%2Bhighlight%28-4c-15c%29%2B10\" Replace the second term \"-19c\" with \"-4c-15c\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286c%5E2-4c%29%2B%28-15c%2B10%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2c%283c-2%29%2B%28-15c%2B10%29\" Factor out the GCF \"2c\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2c%283c-2%29-5%283c-2%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282c-5%29%283c-2%29\" Combine like terms. Or factor out the common term \"3c-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6c%5E2-19c%2B10\" factors to \"%282c-5%29%283c-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"6c%5E2-19c%2B10=%282c-5%29%283c-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282c-5%29%283c-2%29\" to get \"6c%5E2-19c%2B10\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );