document.write( "Question 739791: 6. Given log(3) = 0.47712 , find a approximation for each logarithm
\n" );
document.write( "a) log(30)
\n" );
document.write( "b) log(3000)
\n" );
document.write( "c) log(.3)
\n" );
document.write( "d) log(.003)
\n" );
document.write( "e) log(9)
\n" );
document.write( "f) log(81)
\n" );
document.write( "g) log(√3)\r
\n" );
document.write( "\n" );
document.write( "Can you please help me out? Thanks so much in advance:) \n" );
document.write( "
Algebra.Com's Answer #451891 by lwsshak3(11628) ![]() You can put this solution on YOUR website! 6. Given log(3) = 0.47712 , find a approximation for each logarithm \n" ); document.write( "a) log(30)=log(10*3)=log(10)+log(3)=1+.47712=1.47712 \n" ); document.write( "b) log(3000)=log(1000*3)=log(1000)+log(3)=3+.47712=3.47712 \n" ); document.write( "c) log(.3)=log(10^(-1)*3)=-1+log(3)=-1+.47712=-0.52288 \n" ); document.write( "d) log(.003)=log(10^(-3)*3)=-3+log(3)=-3+.47712=-2.52288 \n" ); document.write( "e) log(9)=log(3^2)=2log(3)=2*.47712=0.95424 \n" ); document.write( "f) log(81)=log(3^3)=3log(3)=3*.47712=1.43136 \n" ); document.write( "g) log(√3)=(1/2)log(3)=1/2*.47712=0.23856 \n" ); document.write( "note: log of base raised to an exponent=exponent; e.g. log 10^3=3 \n" ); document.write( " |