document.write( "Question 739886: 6.
\n" ); document.write( "Two parallel chords 16 centimeters and 30 centimeters long
\n" ); document.write( "are 23 centimeters apart. Find the length of the radius of the
\n" ); document.write( "circle.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #451390 by ankor@dixie-net.com(22740)\"\" \"About 
You can put this solution on YOUR website!
Two parallel chords 16 centimeters and 30 centimeters long are 23 centimeters apart.
\n" ); document.write( " Find the length of the radius of the circle.
\n" ); document.write( ":
\n" ); document.write( "Draw this out
\n" ); document.write( "Let x = distance from the center that bisects the nearest Chord, (30 cm).
\n" ); document.write( "Draw radii from the center to the ends of the chord
\n" ); document.write( "Two identical right triangles are formed, the radii are the hypotenuses
\n" ); document.write( "r^2 = x^2 + 15^2
\n" ); document.write( "r^2 = x^2 + 225
\n" ); document.write( ":
\n" ); document.write( "Assume the other chord (16cm), is on the other side of center, therefore distance from the center that bisects that chord (16cm) = 23-x, so we have:
\n" ); document.write( "r^2 = (23-x)^2 + 8^2
\n" ); document.write( "r^2 = 529 - 46x + x^2 + 64
\n" ); document.write( "r^2 = x^2 - 46x + 593
\n" ); document.write( "replace r^2 with (x^2+ 225)
\n" ); document.write( "x^2 + 225 = x^2 - 46x + 593
\n" ); document.write( "x^2 - x^2 + 46x = 593 - 225
\n" ); document.write( "46x = 368
\n" ); document.write( "x = 368/46
\n" ); document.write( "x = 8 cm
\n" ); document.write( "Find the radius
\n" ); document.write( "r^2 = 8^2 + 225
\n" ); document.write( "r^2 = 289
\n" ); document.write( "r = \"sqrt%28289%29\"
\n" ); document.write( "r = 17 cm is the radius
\n" ); document.write( "
\n" );