document.write( "Question 739886: 6.
\n" );
document.write( "Two parallel chords 16 centimeters and 30 centimeters long
\n" );
document.write( "are 23 centimeters apart. Find the length of the radius of the
\n" );
document.write( "circle.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #451390 by ankor@dixie-net.com(22740)![]() ![]() You can put this solution on YOUR website! Two parallel chords 16 centimeters and 30 centimeters long are 23 centimeters apart. \n" ); document.write( " Find the length of the radius of the circle. \n" ); document.write( ": \n" ); document.write( "Draw this out \n" ); document.write( "Let x = distance from the center that bisects the nearest Chord, (30 cm). \n" ); document.write( "Draw radii from the center to the ends of the chord \n" ); document.write( "Two identical right triangles are formed, the radii are the hypotenuses \n" ); document.write( "r^2 = x^2 + 15^2 \n" ); document.write( "r^2 = x^2 + 225 \n" ); document.write( ": \n" ); document.write( "Assume the other chord (16cm), is on the other side of center, therefore distance from the center that bisects that chord (16cm) = 23-x, so we have: \n" ); document.write( "r^2 = (23-x)^2 + 8^2 \n" ); document.write( "r^2 = 529 - 46x + x^2 + 64 \n" ); document.write( "r^2 = x^2 - 46x + 593 \n" ); document.write( "replace r^2 with (x^2+ 225) \n" ); document.write( "x^2 + 225 = x^2 - 46x + 593 \n" ); document.write( "x^2 - x^2 + 46x = 593 - 225 \n" ); document.write( "46x = 368 \n" ); document.write( "x = 368/46 \n" ); document.write( "x = 8 cm \n" ); document.write( "Find the radius \n" ); document.write( "r^2 = 8^2 + 225 \n" ); document.write( "r^2 = 289 \n" ); document.write( "r = \n" ); document.write( "r = 17 cm is the radius \n" ); document.write( " |