document.write( "Question 737564: Hyperbolas:
\n" );
document.write( "Graph each hyperbola. Identify the verices, foci, and asymptotes\r
\n" );
document.write( "\n" );
document.write( "X^2/4 - y^2/16 = 1 \n" );
document.write( "
Algebra.Com's Answer #450721 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Graph each hyperbola. Identify the verices, foci, and asymptotes \n" ); document.write( " \n" ); document.write( "This is a hyperbola that has a horizontal transverse axis (x-term listed first ahead of y-term) \n" ); document.write( "Its standard form of equation: \n" ); document.write( "For given hyperbola: \n" ); document.write( "center: (0,0) \n" ); document.write( "a^2=4 \n" ); document.write( "a=2 \n" ); document.write( "vertices: (0±a,0)=(0±2,0)=(-2,0) and (2,0) \n" ); document.write( ".. \n" ); document.write( "b^2=16 \n" ); document.write( "b=4 \n" ); document.write( ".. \n" ); document.write( "c^2=a^2+b^2=4+16=20 \n" ); document.write( "c=√20≈4.47 \n" ); document.write( "foci: (0±c,0)=(0±4.47,0)=(-4.47,0) and (4.47,0) \n" ); document.write( ".. \n" ); document.write( "Asymptotes: (equations of lines that go thru center, y=mx+b, m=slope, b= y-intercept) \n" ); document.write( "Slopes of asymptotes of hyperbolas with horizontal transverse axis=±b/a=±4/2=±2 \n" ); document.write( ".. \n" ); document.write( "Equation of asymptote with negative slope=-2 \n" ); document.write( "y=-2x+b \n" ); document.write( "b=0 \n" ); document.write( "y=-2x \n" ); document.write( ".. \n" ); document.write( "Equation of asymptote with positive slope=2 \n" ); document.write( "y=2x+b \n" ); document.write( "b=0 \n" ); document.write( "y=2x \n" ); document.write( "... \n" ); document.write( "y=±(4x^2-16)^.5 \n" ); document.write( "See graph below as a visual check: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |