document.write( "Question 737531: In the diagram below, ΔABC is circumscribed about circle O and the sides of ΔABC are tangent to the circle at points D, E, and F.
\n" ); document.write( "http://imageshack.us/photo/my-images/849/geou.png/
\n" ); document.write( "If AB=20, AE=12, and CF=15, what is the length of AC?
\n" ); document.write( "

Algebra.Com's Answer #450427 by MathLover1(20849)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "If \"AB=20\",
\n" ); document.write( "\"AE=12\", and
\n" ); document.write( "\"CF=15\",
\n" ); document.write( "what is the length of \"AC\"? \r
\n" ); document.write( "\n" ); document.write( "Incenter :
\n" ); document.write( "The location of the center of the \"incircle\". The point where the \"angle\" \"bisectors\" meet. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If \"AB=20\" and \"AE=12\", then \"EB=8\"\r
\n" ); document.write( "\n" ); document.write( "since \"EO=FO=DO\", angle \"EBO\"= angle \"FBO\", and \"BO=BO\".....=> triangles \"EOB\" and \"OBF\" are \"congruent\", then \"EB=BF=8\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since \"EO=FO=DO\", angle \"EAO\"= angle \"DAO\", and \"AO=AO\".....=> triangles \"EAO\" and \"DAO\" are congruent, then \"AE=AD=12\"\r
\n" ); document.write( "\n" ); document.write( "since \"EO=FO=DO\", angle \"DCO\"= angle \"FCO\", and \"AO=AO\".....=> triangles \"DCO\" and \"FCO\" are congruent, then \"DC=CF=15\"\r
\n" ); document.write( "\n" ); document.write( "since the length of \"AC=AD%2BDC\", then \"AC=12%2B15=27\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );