document.write( "Question 736005: Prove using simple induction that, for each integer n >= 1
\n" );
document.write( "3 + 3^2+ 3^3+...+ 3^n = (3^(n+1)-3)/2
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #449630 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Prove using simple induction that, for each integer n >= 1 \n" ); document.write( "3 + 3^2+ 3^3+...+ 3^n = (3^(n+1)-3)/2 \n" ); document.write( "---- \n" ); document.write( "Show it is true for n = 1 \n" ); document.write( "3 = (3^(1+1)-3)/2 = (3^2 - 3)/2 = 6/2 = 3 \n" ); document.write( "---------------------------------------- \n" ); document.write( "Assume it is true for n = k: \n" ); document.write( "3 + 3^2 +...+3^k = (3^(k+1) -3)/2 \n" ); document.write( "---- \n" ); document.write( "Show it must be true for n = k+1 \n" ); document.write( "[3 + 3^2+...+3^k] + 3^(k+1) \n" ); document.write( "--- \n" ); document.write( "= (3^(k+1) -3)/2 + 3^(k+1) \n" ); document.write( "----- \n" ); document.write( "= [3^(k+1) - 3) + 2*3^(k+1)]/2 \n" ); document.write( "---- \n" ); document.write( "= [3*3^(k+1) - 3]/2 \n" ); document.write( "----- \n" ); document.write( "= [3^((k+1)+1) - 3]/2 \n" ); document.write( "=========================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "============================== \n" ); document.write( " |