document.write( "Question 733800: Find a polynomial f(x) of degree 4 that has the indicated zeros and satisfies the given condition: -1, 2, 3i; and f(-2)=10\r
\n" );
document.write( "\n" );
document.write( "I'm kind of stuck with the 3i in the question. Can someone shed some light on how would I get rid of the i in 3i? \n" );
document.write( "
Algebra.Com's Answer #448615 by Edwin McCravy(20064) You can put this solution on YOUR website! \r\n" ); document.write( " -1, 2, 3i; and f(-2)=10\r\n" ); document.write( "\r\n" ); document.write( "Since 3i is a solution, its conjugate -3i is also a solution.\r\n" ); document.write( "[Note that since 3i is really 0+3i, its conjugate is 0-3i, which\r\n" ); document.write( "is -3i]\r\n" ); document.write( "\r\n" ); document.write( "So we start with\r\n" ); document.write( "\r\n" ); document.write( " x = -1; x = 2, x = 3i, x = -3i\r\n" ); document.write( "\r\n" ); document.write( "Get 0 on the right side of each:\r\n" ); document.write( "\r\n" ); document.write( " \r\n" ); document.write( "x+1 = 0; x-2 = 0 x-3i = 0, x+3i = 0\r\n" ); document.write( "\r\n" ); document.write( "Myltiply all the left and right sides together. The right side\r\n" ); document.write( "will just be 0:\r\n" ); document.write( "\r\n" ); document.write( " (x+1)(x-2)(x-3i)(x+3i) = 0\r\n" ); document.write( "\r\n" ); document.write( "Multiply both sides by a constant k, and the left\r\n" ); document.write( "side will be f(x) if we have the right value for k\r\n" ); document.write( "\r\n" ); document.write( "f(x) = k(x+1)(x-2)(x-3i)(x+3i) \r\n" ); document.write( "\r\n" ); document.write( "Multiply the first two and the last two factors \r\n" ); document.write( "\r\n" ); document.write( "f(x) = k(x²-2x+1x-2)(x²+3ix-3ix-9i²) \r\n" ); document.write( "\r\n" ); document.write( "f(x) = k(x²-x-2)(x²-9i²) \r\n" ); document.write( "\r\n" ); document.write( "Now since i² = -1, -9i² = -9(-1) = +9\r\n" ); document.write( "\r\n" ); document.write( "f(x) = k(x²-x-2)(x²+9) \r\n" ); document.write( "\r\n" ); document.write( "Multiply those two parentheses together:\r\n" ); document.write( "\r\n" ); document.write( "f(x) = k(x4+9x²-x³-2x²-9x-18) \r\n" ); document.write( " \r\n" ); document.write( "Collect like terms:\r\n" ); document.write( "\r\n" ); document.write( "f(x) = k(x4-x³+7x²-9x-18)\r\n" ); document.write( "\r\n" ); document.write( "Now we can find k because we are given f(-2)=10\r\n" ); document.write( "\r\n" ); document.write( "We substitute x=-2\r\n" ); document.write( "\r\n" ); document.write( "f(-2) = k((-2)4-(-2)³+7(-2)²-9(-2)-18)\r\n" ); document.write( "\r\n" ); document.write( "f(-2) = k(16-(-8)+7(4)+18-18)\r\n" ); document.write( "\r\n" ); document.write( "f(-2) = k(16+8+28)\r\n" ); document.write( "\r\n" ); document.write( "f(-2) = k(52)\r\n" ); document.write( "\r\n" ); document.write( "We substitute 10 for f(-2)\r\n" ); document.write( "\r\n" ); document.write( " 10 = k(52)\r\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( " |