document.write( "Question 732799: The sum of the first 100 terms of an arithmetic progression is 10000; the first, second and fifth terms of this progression are three consecutive terms of a geometric progression. Find the first term, a, and the non-zero common difference, d. of the arithmetic progression \n" ); document.write( "
Algebra.Com's Answer #448074 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
S 100 = 100/2[2a+99d]\r
\n" ); document.write( "\n" ); document.write( "S100 =50[2a+99d]\r
\n" ); document.write( "\n" ); document.write( "a, a+d, a+4d \r
\n" ); document.write( "\n" ); document.write( "(a+d)^2=a(a+4d)\r
\n" ); document.write( "\n" ); document.write( "a^2+2ad+d^2=a^2+4ad
\n" ); document.write( "d^2=2ad
\n" ); document.write( "d=2a\r
\n" ); document.write( "\n" ); document.write( "S100 =50[2a+99d]
\n" ); document.write( "S100= 50*100d\r
\n" ); document.write( "\n" ); document.write( "S100=5000d
\n" ); document.write( "10,000=5000d
\n" ); document.write( "d=2
\n" ); document.write( "Therefore a=1\r
\n" ); document.write( "\n" ); document.write( "Check\r
\n" ); document.write( "\n" ); document.write( "s100 = 100/2[2+198]
\n" ); document.write( "s100= 50*200
\n" ); document.write( "s100 = 10,000\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );