document.write( "Question 63902: The graph of the relation x^2 - 4y^2 + 2x - 8y - 10 = 0 is a (an)\r
\n" );
document.write( "\n" );
document.write( "a. point
\n" );
document.write( "b. straight line
\n" );
document.write( "c. pair of intersecting straight lines
\n" );
document.write( "d. circle
\n" );
document.write( "e. ellipse
\n" );
document.write( "f. hyperbola
\n" );
document.write( "g. parabola
\n" );
document.write( "h. none of these \n" );
document.write( "
Algebra.Com's Answer #44603 by algebrapro18(249)![]() ![]() ![]() You can put this solution on YOUR website! You need to complete the square to get this equation into standard form and then see what it matches up to. \r \n" ); document.write( "\n" ); document.write( "x^2 - 4y^2 + 2x - 8y - 10 = 0 \r \n" ); document.write( "\n" ); document.write( "x^2 + 2x - 4(y^2 - 2y) = 10 \r \n" ); document.write( "\n" ); document.write( "x^2 + 2x + 1 - 4(y^2 - 2y + 1) = 10+4+1 \r \n" ); document.write( "\n" ); document.write( "(x+1)^2 - 4(y-1)^2 = 15 \r \n" ); document.write( "\n" ); document.write( "((x+1)^2)/15 - (4(y-1)^2)/15 = 1 \r \n" ); document.write( "\n" ); document.write( "I can't remember if this is the standard form for an ellipse or a hyperbola but it is one of the two. \n" ); document.write( " |