Algebra.Com's Answer #445506 by MathLover1(20849)  You can put this solution on YOUR website! \r \n" );
document.write( "\n" );
document.write( "1.\r \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Completing the Square to Get a Quadratic into Vertex Form | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Start with the given equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Subtract from both sides \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factor out the leading coefficient  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Take half of the x coefficient to get (ie ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now square to get (ie ) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add and subtract this value inside the parenthesis. Doing both the addition and subtraction of does not change the equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now factor to get  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Distribute \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add to both sides to isolate y \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Combine like terms \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now the quadratic is in vertex form where , , and . Remember (h,k) is the vertex and \"a\" is the stretch/compression factor. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Check: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the original equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the final equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is also ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So if these two equations were graphed on the same coordinate plane, one would overlap another perfectly. So this visually verifies our answer. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "2.\r \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Quadratic Formula | \n" );
document.write( "Let's use the quadratic formula to solve for x:
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( " Starting with the general quadratic \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " the general solution using the quadratic equation is: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So lets solve ( notice , , and ) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Plug in a=5, b=-2, and c=3 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Negate -2 to get 2 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Square -2 to get 4 (note: remember when you square -2, you must square the negative as well. This is because .) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply to get  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Combine like terms in the radicand (everything under the square root) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Simplify the square root (note: If you need help with simplifying the square root, check out this solver) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply 2 and 5 to get 10 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " After simplifying, the quadratic has roots of \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " or  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "3.\r \n" );
document.write( "\n" );
document.write( " ....if and , than\r \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " \n" );
document.write( " |