document.write( "Question 63817: slove algebraically 3^2x+1=1/243 that is 3 to the power of 2x+1 equals 1 over 243 \n" ); document.write( "
Algebra.Com's Answer #44515 by ankor@dixie-net.com(22740)\"\" \"About 
You can put this solution on YOUR website!
3^2x+1=1/243 that is 3 to the power of 2x+1 equals 1 over 243\r
\n" ); document.write( "\n" ); document.write( "3^(2x+1) = 1/243
\n" ); document.write( ":
\n" ); document.write( "Using the log equivalent of exponents
\n" ); document.write( "(2x+1)*ln(3) = ln(1/243)
\n" ); document.write( ":
\n" ); document.write( "(2x+1)*1.09861 = -5.49306
\n" ); document.write( ":
\n" ); document.write( "2x + 1 = \"-5.49306%2F1.09861\"
\n" ); document.write( ":
\n" ); document.write( "2x + 1 = -5
\n" ); document.write( ":
\n" ); document.write( "2x = -5 - 1
\n" ); document.write( ":
\n" ); document.write( "2x = -6
\n" ); document.write( ":
\n" ); document.write( "x = -3
\n" ); document.write( ":
\n" ); document.write( ":
\n" ); document.write( "Check: the exponent would be 2(-3) + 1 = -5
\n" ); document.write( "on a calc: 3^-5 = .004115 which is decimal equiv of 1/243
\n" ); document.write( "
\n" ); document.write( "
\n" );