document.write( "Question 726751: I have a question regarding finding the second derivative of a hyperbola...\r
\n" ); document.write( "\n" ); document.write( "Find the value of d^2y/dx^2 for the hyperbola defined by the equation y^2-x^2=7 at the point (3,4).\r
\n" ); document.write( "\n" ); document.write( "The first derivative I have already found- dy/dx=x/y\r
\n" ); document.write( "\n" ); document.write( "However, to find the second derivative, I was a little bit more confused...
\n" ); document.write( "y=xy^-1\r
\n" ); document.write( "\n" ); document.write( "d/dx(y)=d/dx(xy^-1)\r
\n" ); document.write( "\n" ); document.write( "dy/dx=x*dy/dx*-1y^-2 + y^-1 * d/dx (x)\r
\n" ); document.write( "\n" ); document.write( "dy/dx= -x*dy/dx*y^-2 +y^-1\r
\n" ); document.write( "\n" ); document.write( "dy/dx- (dy/dx (-xy^-2))= y^-1\r
\n" ); document.write( "\n" ); document.write( "dy/dx(1+xy^-2)= y^-1\r
\n" ); document.write( "\n" ); document.write( "dy/dx= y^-1/1+xy^-2
\n" ); document.write( "dy/dx= 1/y(1+xy^-2)\r
\n" ); document.write( "\n" ); document.write( "Now, to plug in the points (3,4)\r
\n" ); document.write( "\n" ); document.write( "dy/dx= 1/y(1+xy^-2)\r
\n" ); document.write( "\n" ); document.write( "1/(4(1+(3)(4^-2))\r
\n" ); document.write( "\n" ); document.write( "= 1/(4+ (12/6)\r
\n" ); document.write( "\n" ); document.write( "I hope this was not too confusing- but I would like to know if this is the correct method for solving this problem, and if the answer is correct as well.\r
\n" ); document.write( "\n" ); document.write( "I would really appreciate your help.\r
\n" ); document.write( "\n" ); document.write( "Thank you very much.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #444791 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
Find the value of d^2y/dx^2 for the hyperbola defined by the equation y^2-x^2=7 at the point (3,4).
\n" ); document.write( "-------
\n" ); document.write( "2ydy - 2xdx = 0
\n" ); document.write( "y' = x/y (just checking)
\n" ); document.write( "------------
\n" ); document.write( "y' = xy^-1
\n" ); document.write( "y'' = y^-1*dx + x*(-1)*y^-2*dy\r
\n" ); document.write( "\n" ); document.write( "The first derivative I have already found- dy/dx=x/y\r
\n" ); document.write( "\n" ); document.write( "However, to find the second derivative, I was a little bit more confused...
\n" ); document.write( "y=xy^-1\r
\n" ); document.write( "\n" ); document.write( "d/dx(y)=d/dx(xy^-1)\r
\n" ); document.write( "\n" ); document.write( "dy/dx=x*dy/dx*-1y^-2 + y^-1 * d/dx (x)\r
\n" ); document.write( "\n" ); document.write( "dy/dx= -x*dy/dx*y^-2 +y^-1\r
\n" ); document.write( "\n" ); document.write( "dy/dx- (dy/dx (-xy^-2))= y^-1\r
\n" ); document.write( "\n" ); document.write( "dy/dx(1+xy^-2)= y^-1\r
\n" ); document.write( "\n" ); document.write( "dy/dx= y^-1/1+xy^-2
\n" ); document.write( "dy/dx= 1/y(1+xy^-2)
\n" ); document.write( "============================
\n" ); document.write( "(3/4) is in the 1st Q, so solve for the + half of the hyperbola
\n" ); document.write( "----
\n" ); document.write( "y = (x^2 + 7)^1/2
\n" ); document.write( "y' = (1/2)*(x^2+7)^(-1/2)*2x
\n" ); document.write( "y' = x*(x^2+7)^(-1/2)
\n" ); document.write( "-----
\n" ); document.write( "y'' = (x^2+7)^(-1/2) + x*(-1/2)*(x^2+7)^(-3/2)*2x
\n" ); document.write( "y'' = ((x^2+7)^(-1/2) - (x^2))/(x^2+7)^(3/2)
\n" ); document.write( "y'' = (x^2+7 - x^2)/((x^2+7)^(3/2))
\n" ); document.write( "y'' = 7/(x^2+7)^3/2)
\n" ); document.write( "y''(3) = 7/(16)^3/2
\n" ); document.write( "= 7/64
\n" ); document.write( "
\n" );