document.write( "Question 725344: I'm having a problem in figuring out what the \"2\" in front of 2x(squared) means.
\n" ); document.write( "This is factoring polynomials mentally or with the box method.\r
\n" ); document.write( "\n" ); document.write( "2x(squared) + 11x - 21\r
\n" ); document.write( "\n" ); document.write( "The missing numbers are -3 and 14.\r
\n" ); document.write( "\n" ); document.write( "I know I'm supposed to multiply -21 by 2, but what do I do after solving for the two missing numbers?
\n" ); document.write( "

Algebra.Com's Answer #444106 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2x%5E2%2B11x-21\", we can see that the first coefficient is \"2\", the second coefficient is \"11\", and the last term is \"-21\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"-21\" to get \"%282%29%28-21%29=-42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-42\" (the previous product) and add to the second coefficient \"11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-42\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-42\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,7,14,21,42\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-7,-14,-21,-42\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-42\".\r
\n" ); document.write( "\n" ); document.write( "1*(-42) = -42
\n" ); document.write( "2*(-21) = -42
\n" ); document.write( "3*(-14) = -42
\n" ); document.write( "6*(-7) = -42
\n" ); document.write( "(-1)*(42) = -42
\n" ); document.write( "(-2)*(21) = -42
\n" ); document.write( "(-3)*(14) = -42
\n" ); document.write( "(-6)*(7) = -42\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-421+(-42)=-41
2-212+(-21)=-19
3-143+(-14)=-11
6-76+(-7)=-1
-142-1+42=41
-221-2+21=19
-314-3+14=11
-67-6+7=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-3\" and \"14\" add to \"11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-3\" and \"14\" both multiply to \"-42\" and add to \"11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"11x\" with \"-3x%2B14x\". Remember, \"-3\" and \"14\" add to \"11\". So this shows us that \"-3x%2B14x=11x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2Bhighlight%28-3x%2B14x%29-21\" Replace the second term \"11x\" with \"-3x%2B14x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%5E2-3x%29%2B%2814x-21%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x-3%29%2B%2814x-21%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x-3%29%2B7%282x-3%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B7%29%282x-3%29\" Combine like terms. Or factor out the common term \"2x-3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E2%2B11x-21\" factors to \"%28x%2B7%29%282x-3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"2x%5E2%2B11x-21=%28x%2B7%29%282x-3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x%2B7%29%282x-3%29\" to get \"2x%5E2%2B11x-21\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );