document.write( "Question 721379: write the equation y^2- 8y - 8x = 8 in standard form. Fill in the blanks and sketch the graph.
\n" ); document.write( "A)vertex:
\n" ); document.write( " B)Directrix:
\n" ); document.write( " C)AOS:
\n" ); document.write( " D)p=
\n" ); document.write( " E)Latus Rectum=
\n" ); document.write( " F)focus:
\n" ); document.write( "

Algebra.Com's Answer #442706 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
write the equation y^2- 8y - 8x = 8 in standard form. Fill in the blanks and sketch the graph.
\n" ); document.write( "A)vertex:(-3,4)
\n" ); document.write( "B)Directrix:x=-5
\n" ); document.write( "C)AOS:y=4
\n" ); document.write( "D)p=2
\n" ); document.write( "E)Latus Rectum=8
\n" ); document.write( "F)focus:(-1,4)
\n" ); document.write( "***
\n" ); document.write( "y^2-8y-8x=8
\n" ); document.write( "complete the square:
\n" ); document.write( "(y^2-8y+16)=8x+8+16
\n" ); document.write( "(y-4)^2=8x+24
\n" ); document.write( "(y-4)^2=8(x+3)
\n" ); document.write( "This is an equation of a parabola that opens rightward:
\n" ); document.write( "Its basic equation: (y-k)^2=4p(x-h), (h,k)=(x,y) coordinates of the vertex
\n" ); document.write( "vertex: (-3,4)
\n" ); document.write( "Axis of symmetry: y=4
\n" ); document.write( "4p=8
\n" ); document.write( "p=2
\n" ); document.write( "focus: (-1,4)
\n" ); document.write( "directrix: x=-5
\n" ); document.write( "latus rectum(focal width)=4p=8
\n" ); document.write( "Standard form of equation: (vertex form):
\n" ); document.write( "x=(1/8)(y-4)^2-3
\n" ); document.write( "see graph below:
\n" ); document.write( " y=(8x+24)^.5+4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );