document.write( "Question 721379: write the equation y^2- 8y - 8x = 8 in standard form. Fill in the blanks and sketch the graph.
\n" );
document.write( "A)vertex:
\n" );
document.write( " B)Directrix:
\n" );
document.write( " C)AOS:
\n" );
document.write( " D)p=
\n" );
document.write( " E)Latus Rectum=
\n" );
document.write( " F)focus: \n" );
document.write( "
Algebra.Com's Answer #442706 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! write the equation y^2- 8y - 8x = 8 in standard form. Fill in the blanks and sketch the graph. \n" ); document.write( "A)vertex:(-3,4) \n" ); document.write( "B)Directrix:x=-5 \n" ); document.write( "C)AOS:y=4 \n" ); document.write( "D)p=2 \n" ); document.write( "E)Latus Rectum=8 \n" ); document.write( "F)focus:(-1,4) \n" ); document.write( "*** \n" ); document.write( "y^2-8y-8x=8 \n" ); document.write( "complete the square: \n" ); document.write( "(y^2-8y+16)=8x+8+16 \n" ); document.write( "(y-4)^2=8x+24 \n" ); document.write( "(y-4)^2=8(x+3) \n" ); document.write( "This is an equation of a parabola that opens rightward: \n" ); document.write( "Its basic equation: (y-k)^2=4p(x-h), (h,k)=(x,y) coordinates of the vertex \n" ); document.write( "vertex: (-3,4) \n" ); document.write( "Axis of symmetry: y=4 \n" ); document.write( "4p=8 \n" ); document.write( "p=2 \n" ); document.write( "focus: (-1,4) \n" ); document.write( "directrix: x=-5 \n" ); document.write( "latus rectum(focal width)=4p=8 \n" ); document.write( "Standard form of equation: (vertex form): \n" ); document.write( "x=(1/8)(y-4)^2-3 \n" ); document.write( "see graph below: \n" ); document.write( " y=(8x+24)^.5+4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |