document.write( "Question 718715: 18x^2+11x-24 \n" ); document.write( "
Algebra.Com's Answer #441035 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"18x%5E2%2B11x-24\", we can see that the first coefficient is \"18\", the second coefficient is \"11\", and the last term is \"-24\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"18\" by the last term \"-24\" to get \"%2818%29%28-24%29=-432\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-432\" (the previous product) and add to the second coefficient \"11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-432\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-432\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,9,12,16,18,24,27,36,48,54,72,108,144,216,432\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-9,-12,-16,-18,-24,-27,-36,-48,-54,-72,-108,-144,-216,-432\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-432\".\r
\n" ); document.write( "\n" ); document.write( "1*(-432) = -432
\n" ); document.write( "2*(-216) = -432
\n" ); document.write( "3*(-144) = -432
\n" ); document.write( "4*(-108) = -432
\n" ); document.write( "6*(-72) = -432
\n" ); document.write( "8*(-54) = -432
\n" ); document.write( "9*(-48) = -432
\n" ); document.write( "12*(-36) = -432
\n" ); document.write( "16*(-27) = -432
\n" ); document.write( "18*(-24) = -432
\n" ); document.write( "(-1)*(432) = -432
\n" ); document.write( "(-2)*(216) = -432
\n" ); document.write( "(-3)*(144) = -432
\n" ); document.write( "(-4)*(108) = -432
\n" ); document.write( "(-6)*(72) = -432
\n" ); document.write( "(-8)*(54) = -432
\n" ); document.write( "(-9)*(48) = -432
\n" ); document.write( "(-12)*(36) = -432
\n" ); document.write( "(-16)*(27) = -432
\n" ); document.write( "(-18)*(24) = -432\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-4321+(-432)=-431
2-2162+(-216)=-214
3-1443+(-144)=-141
4-1084+(-108)=-104
6-726+(-72)=-66
8-548+(-54)=-46
9-489+(-48)=-39
12-3612+(-36)=-24
16-2716+(-27)=-11
18-2418+(-24)=-6
-1432-1+432=431
-2216-2+216=214
-3144-3+144=141
-4108-4+108=104
-672-6+72=66
-854-8+54=46
-948-9+48=39
-1236-12+36=24
-1627-16+27=11
-1824-18+24=6
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-16\" and \"27\" add to \"11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-16\" and \"27\" both multiply to \"-432\" and add to \"11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"11x\" with \"-16x%2B27x\". Remember, \"-16\" and \"27\" add to \"11\". So this shows us that \"-16x%2B27x=11x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"18x%5E2%2Bhighlight%28-16x%2B27x%29-24\" Replace the second term \"11x\" with \"-16x%2B27x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2818x%5E2-16x%29%2B%2827x-24%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%289x-8%29%2B%2827x-24%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%289x-8%29%2B3%289x-8%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B3%29%289x-8%29\" Combine like terms. Or factor out the common term \"9x-8\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"18x%5E2%2B11x-24\" factors to \"%282x%2B3%29%289x-8%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"18x%5E2%2B11x-24=%282x%2B3%29%289x-8%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282x%2B3%29%289x-8%29\" to get \"18x%5E2%2B11x-24\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );