document.write( "Question 717712: Determine the missing coordinate for the point (x,(1/4))on the unit circle that in in quadrant II. \n" ); document.write( "
Algebra.Com's Answer #440424 by jim_thompson5910(35256) ![]() You can put this solution on YOUR website! We're in quadrant II, so x < 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2 + y^2 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2 + (1/4)^2 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2 + 1/16 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2 = 1 - 1/16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2 = 16/16 - 1/16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2 = 15/16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = -sqrt(15/16)... remember, x < 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = -sqrt(15)/sqrt(16)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = -sqrt(15)/4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So |