document.write( "Question 715969: Describe the vertical asymptote(s) and hole(s) for the graph of y = (x-5)/(x^2+4x+3)\r
\n" ); document.write( "\n" ); document.write( "asymptotes: x=-3,-1 and no holes
\n" ); document.write( "asymptotes: x=-3 and hole: x=-5
\n" ); document.write( "asymptotes: x=-3,-1 and hole:x=-5
\n" ); document.write( "asymptotes: x=-5 and hole: x=-3
\n" ); document.write( "

Algebra.Com's Answer #439684 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "y = \"%28x-5%29%2F%28x%5E2%2B4x%2B3%29\"\r\n" );
document.write( "\r\n" );
document.write( "Factor the denominator:\r\n" );
document.write( "\r\n" );
document.write( "y = \"%28x-5%29%2F%28%28x%2B3%29%28x%2B1%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "There are no holes because the numerator and the denominator\r\n" );
document.write( "have no common factors.\r\n" );
document.write( "\r\n" );
document.write( "Therefore the equations of the vertical asymptotes are found \r\n" );
document.write( "by setting the denominator = 0\r\n" );
document.write( "\r\n" );
document.write( "(x+3)(x+1) = 0\r\n" );
document.write( "\r\n" );
document.write( "x+3=0;  x+1=0\r\n" );
document.write( "  x=-3;   x=-1\r\n" );
document.write( "\r\n" );
document.write( "It has x-intercept (5,0) and y-intercept (0,\"-5%2F4\").\r\n" );
document.write( "The green lines are the vertical asymptotes:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Edwin

\n" ); document.write( "
\n" ); document.write( "
\n" );