document.write( "Question 715758: equation of a tilted parabola \n" ); document.write( "
Algebra.Com's Answer #439576 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
First, notice that the equation of the parabola y = x^2 can be parametrized by x = t, y = t^2, as t goes from -infinity to infinity; or, as a column vector,
\n" ); document.write( " [x] = [t]
\n" ); document.write( " [y] = [t^2].
\n" ); document.write( "
\n" ); document.write( "To rotate the graph of the parabola about the origin, we rotate each point individually. Rotation clockwise by 45 degrees is a linear transformation; the transformation sends the point (1, 0) to (1/sqrt(2), -1/sqrt(2)), and it sends the point (0, 1) to (1/sqrt(2), sqrt(2)). So the standard matrix for the linear transformation is
\n" ); document.write( "
\n" ); document.write( "[1/sqrt(2) 1/sqrt(2)]
\n" ); document.write( " [-1/sqrt(2) 1/sqrt(2)]
\n" ); document.write( "
\n" ); document.write( "Thus, if we apply this linear transformation to a point (t, t^2) on the graph of the parabola, we get
\n" ); document.write( "
\n" ); document.write( "[1/sqrt(2) 1/sqrt(2)][t]
\n" ); document.write( " [-1/sqrt(2) 1/sqrt(2)][t^2]
\n" ); document.write( "
\n" ); document.write( "Which gives
\n" ); document.write( "
\n" ); document.write( "[(t^2 + t)/sqrt(2)]
\n" ); document.write( " [(t^2 - t)/sqrt(2)].
\n" ); document.write( "
\n" ); document.write( "So, as t goes from -infinity to infinity, this is a parametrization of the graph of the rotated parabola. We must now convert back to x and y.
\n" ); document.write( "
\n" ); document.write( "We have
\n" ); document.write( "
\n" ); document.write( "[x] = [(t^2 + t)/sqrt(2)]
\n" ); document.write( " [y] = [(t^2 - t)/sqrt(2)]
\n" ); document.write( "
\n" ); document.write( "By adding and subtracting x and y, we find
\n" ); document.write( "
\n" ); document.write( "x - y = t * sqrt(2)
\n" ); document.write( " x + y = t^2 * sqrt(2)
\n" ); document.write( "
\n" ); document.write( "Solving the first equation for t, we get t = (x - y) / sqrt(2). Plug this into the second equation:
\n" ); document.write( "
\n" ); document.write( "x + y = ((x - y) / sqrt(2))^2 * sqrt(2)
\n" ); document.write( " x + y = ((x^2 - 2xy + y^2) / 2) * sqrt(2)
\n" ); document.write( " x + y = (x^2 - 2xy + y^2) / sqrt(2)
\n" ); document.write( " x * sqrt(2) + y * sqrt(2) = x^2 - 2xy + y^2
\n" ); document.write( " x^2 - 2xy + y^2 - x * sqrt(2) - y * sqrt(2) = 0.
\n" ); document.write( "
\n" ); document.write( "So an equation for the parabola y = x^2 rotated clockwise by 45 degrees is
\n" ); document.write( "
\n" ); document.write( "x^2 - 2xy + y^2 - x * sqrt(2) - y * sqrt(2) = 0.
\n" ); document.write( "==========================
\n" ); document.write( "Copied from somewhere, I lost the link to the site.
\n" ); document.write( "
\n" );