document.write( "Question 715758: equation of a tilted parabola \n" ); document.write( "
Algebra.Com's Answer #439576 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! First, notice that the equation of the parabola y = x^2 can be parametrized by x = t, y = t^2, as t goes from -infinity to infinity; or, as a column vector, \n" ); document.write( " [x] = [t] \n" ); document.write( " [y] = [t^2]. \n" ); document.write( " \n" ); document.write( "To rotate the graph of the parabola about the origin, we rotate each point individually. Rotation clockwise by 45 degrees is a linear transformation; the transformation sends the point (1, 0) to (1/sqrt(2), -1/sqrt(2)), and it sends the point (0, 1) to (1/sqrt(2), sqrt(2)). So the standard matrix for the linear transformation is \n" ); document.write( " \n" ); document.write( "[1/sqrt(2) 1/sqrt(2)] \n" ); document.write( " [-1/sqrt(2) 1/sqrt(2)] \n" ); document.write( " \n" ); document.write( "Thus, if we apply this linear transformation to a point (t, t^2) on the graph of the parabola, we get \n" ); document.write( " \n" ); document.write( "[1/sqrt(2) 1/sqrt(2)][t] \n" ); document.write( " [-1/sqrt(2) 1/sqrt(2)][t^2] \n" ); document.write( " \n" ); document.write( "Which gives \n" ); document.write( " \n" ); document.write( "[(t^2 + t)/sqrt(2)] \n" ); document.write( " [(t^2 - t)/sqrt(2)]. \n" ); document.write( " \n" ); document.write( "So, as t goes from -infinity to infinity, this is a parametrization of the graph of the rotated parabola. We must now convert back to x and y. \n" ); document.write( " \n" ); document.write( "We have \n" ); document.write( " \n" ); document.write( "[x] = [(t^2 + t)/sqrt(2)] \n" ); document.write( " [y] = [(t^2 - t)/sqrt(2)] \n" ); document.write( " \n" ); document.write( "By adding and subtracting x and y, we find \n" ); document.write( " \n" ); document.write( "x - y = t * sqrt(2) \n" ); document.write( " x + y = t^2 * sqrt(2) \n" ); document.write( " \n" ); document.write( "Solving the first equation for t, we get t = (x - y) / sqrt(2). Plug this into the second equation: \n" ); document.write( " \n" ); document.write( "x + y = ((x - y) / sqrt(2))^2 * sqrt(2) \n" ); document.write( " x + y = ((x^2 - 2xy + y^2) / 2) * sqrt(2) \n" ); document.write( " x + y = (x^2 - 2xy + y^2) / sqrt(2) \n" ); document.write( " x * sqrt(2) + y * sqrt(2) = x^2 - 2xy + y^2 \n" ); document.write( " x^2 - 2xy + y^2 - x * sqrt(2) - y * sqrt(2) = 0. \n" ); document.write( " \n" ); document.write( "So an equation for the parabola y = x^2 rotated clockwise by 45 degrees is \n" ); document.write( " \n" ); document.write( "x^2 - 2xy + y^2 - x * sqrt(2) - y * sqrt(2) = 0. \n" ); document.write( "========================== \n" ); document.write( "Copied from somewhere, I lost the link to the site. \n" ); document.write( " |