document.write( "Question 714299: I've been trying to factor this all night but cannot figure it out. Please help...16z^2-54z+35 I've tried AC=560, factors 40 and 14 but that doesn't account for the -54, it's positive 54. \n" ); document.write( "
Algebra.Com's Answer #438750 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"16z%5E2-54z%2B35\", we can see that the first coefficient is \"16\", the second coefficient is \"-54\", and the last term is \"35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"16\" by the last term \"35\" to get \"%2816%29%2835%29=560\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"560\" (the previous product) and add to the second coefficient \"-54\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"560\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"560\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,7,8,10,14,16,20,28,35,40,56,70,80,112,140,280,560\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-7,-8,-10,-14,-16,-20,-28,-35,-40,-56,-70,-80,-112,-140,-280,-560\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"560\".\r
\n" ); document.write( "\n" ); document.write( "1*560 = 560
\n" ); document.write( "2*280 = 560
\n" ); document.write( "4*140 = 560
\n" ); document.write( "5*112 = 560
\n" ); document.write( "7*80 = 560
\n" ); document.write( "8*70 = 560
\n" ); document.write( "10*56 = 560
\n" ); document.write( "14*40 = 560
\n" ); document.write( "16*35 = 560
\n" ); document.write( "20*28 = 560
\n" ); document.write( "(-1)*(-560) = 560
\n" ); document.write( "(-2)*(-280) = 560
\n" ); document.write( "(-4)*(-140) = 560
\n" ); document.write( "(-5)*(-112) = 560
\n" ); document.write( "(-7)*(-80) = 560
\n" ); document.write( "(-8)*(-70) = 560
\n" ); document.write( "(-10)*(-56) = 560
\n" ); document.write( "(-14)*(-40) = 560
\n" ); document.write( "(-16)*(-35) = 560
\n" ); document.write( "(-20)*(-28) = 560\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-54\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
15601+560=561
22802+280=282
41404+140=144
51125+112=117
7807+80=87
8708+70=78
105610+56=66
144014+40=54
163516+35=51
202820+28=48
-1-560-1+(-560)=-561
-2-280-2+(-280)=-282
-4-140-4+(-140)=-144
-5-112-5+(-112)=-117
-7-80-7+(-80)=-87
-8-70-8+(-70)=-78
-10-56-10+(-56)=-66
-14-40-14+(-40)=-54
-16-35-16+(-35)=-51
-20-28-20+(-28)=-48
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-14\" and \"-40\" add to \"-54\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-14\" and \"-40\" both multiply to \"560\" and add to \"-54\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-54z\" with \"-14z-40z\". Remember, \"-14\" and \"-40\" add to \"-54\". So this shows us that \"-14z-40z=-54z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"16z%5E2%2Bhighlight%28-14z-40z%29%2B35\" Replace the second term \"-54z\" with \"-14z-40z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2816z%5E2-14z%29%2B%28-40z%2B35%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2z%288z-7%29%2B%28-40z%2B35%29\" Factor out the GCF \"2z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2z%288z-7%29-5%288z-7%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282z-5%29%288z-7%29\" Combine like terms. Or factor out the common term \"8z-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"16z%5E2-54z%2B35\" factors to \"%282z-5%29%288z-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"16z%5E2-54z%2B35=%282z-5%29%288z-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282z-5%29%288z-7%29\" to get \"16z%5E2-54z%2B35\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );