document.write( "Question 711954: Write the given expression in terms of x and y only. Simplify the result.\r
\n" ); document.write( "\n" ); document.write( "tan(sin^-1x + cos^-1y)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #437825 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Write the given expression in terms of x and y only. Simplify the result.
\n" ); document.write( "tan(sin^-1x + cos^-1y)
\n" ); document.write( "notation:
\n" ); document.write( "O=opposite side
\n" ); document.write( "A=adjacent side
\n" ); document.write( "H=hypotenuse
\n" ); document.write( "..
\n" ); document.write( "let angle a=sin^-1x
\n" ); document.write( "sin a=x/1=0/H
\n" ); document.write( "O=x, H=1
\n" ); document.write( "A=(√(H^2-O^2)=√(1-x^2)
\n" ); document.write( "tan a=O/A=x/√(1-x^2)
\n" ); document.write( "..
\n" ); document.write( "let angle b=cos^-1y
\n" ); document.write( "cos b=y/1=A/H
\n" ); document.write( "A=y, H=1
\n" ); document.write( "O=(√(H^2-A^2)=√(1-y^2)
\n" ); document.write( "tan b=O/A=√(1-y^2)/y
\n" ); document.write( "..
\n" ); document.write( "Identity:
\n" ); document.write( "tan(a+b)=(tan a+tan b)/(1-tan a*tan b)
\n" ); document.write( "=(x/√(1-x^2)+√(1-y^2)/y)/(1-x/√(1-x^2)*√(1-y^2)/y)
\n" ); document.write( "
\n" );