document.write( "Question 711954: Write the given expression in terms of x and y only. Simplify the result.\r
\n" );
document.write( "\n" );
document.write( "tan(sin^-1x + cos^-1y)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #437825 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Write the given expression in terms of x and y only. Simplify the result. \n" ); document.write( "tan(sin^-1x + cos^-1y) \n" ); document.write( "notation: \n" ); document.write( "O=opposite side \n" ); document.write( "A=adjacent side \n" ); document.write( "H=hypotenuse \n" ); document.write( ".. \n" ); document.write( "let angle a=sin^-1x \n" ); document.write( "sin a=x/1=0/H \n" ); document.write( "O=x, H=1 \n" ); document.write( "A=(√(H^2-O^2)=√(1-x^2) \n" ); document.write( "tan a=O/A=x/√(1-x^2) \n" ); document.write( ".. \n" ); document.write( "let angle b=cos^-1y \n" ); document.write( "cos b=y/1=A/H \n" ); document.write( "A=y, H=1 \n" ); document.write( "O=(√(H^2-A^2)=√(1-y^2) \n" ); document.write( "tan b=O/A=√(1-y^2)/y \n" ); document.write( ".. \n" ); document.write( "Identity: \n" ); document.write( "tan(a+b)=(tan a+tan b)/(1-tan a*tan b) \n" ); document.write( "=(x/√(1-x^2)+√(1-y^2)/y)/(1-x/√(1-x^2)*√(1-y^2)/y) \n" ); document.write( " |