document.write( "Question 711294: on a circle of radius 6 ft what angle in degrees would subtend an arc of length 3 ft \n" ); document.write( "
Algebra.Com's Answer #437372 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Arc Length = (angle/360)*(Circumference)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Arc Length = (angle/360)*(2*pi*r)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3 = (angle/360)*(2*pi*6)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3 = (angle/360)*(12pi)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3/(12pi) = angle/360\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(3/(12pi))*360 = angle\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "90/pi = angle\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Angle = 90/pi ... exact angle (in degrees)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Angle = 28.6478897565411 ... approximate angle (in degrees)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |