document.write( "Question 62769: can you help?
\n" );
document.write( "find the vertex and intercepts of the quadratic function f(x)=x^2+x-6. thank you very much \n" );
document.write( "
Algebra.Com's Answer #43604 by uma(370)![]() ![]() ![]() You can put this solution on YOUR website! The given equation is y = x^2 + x - 6\r \n" ); document.write( "\n" ); document.write( "This is of the form ax^2 + bx + c = y\r \n" ); document.write( "\n" ); document.write( "The x co-ordinate of the vertex = -b/2a\r \n" ); document.write( "\n" ); document.write( " = -1/2*1\r \n" ); document.write( "\n" ); document.write( " = -1/2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Replacing x by -1/2 in the given equation,\r \n" ); document.write( "\n" ); document.write( "y = (-1/2)^2 + (-1/2) - 6\r \n" ); document.write( "\n" ); document.write( " = 1/4 - 1/2 - 6\r \n" ); document.write( "\n" ); document.write( " = -1/4 - 6\r \n" ); document.write( "\n" ); document.write( " = - 6 1/4\r \n" ); document.write( "\n" ); document.write( "The vertex = (-1/2, - 25/4)\r \n" ); document.write( "\n" ); document.write( "To find the y intercept we replace x by 0.\r \n" ); document.write( "\n" ); document.write( "==> y = 0 + 0 -6\r \n" ); document.write( "\n" ); document.write( "==> y = - 6\r \n" ); document.write( "\n" ); document.write( "To find the x intercept we set y = 0\r \n" ); document.write( "\n" ); document.write( "==> x^2 + x - 6 = 0\r \n" ); document.write( "\n" ); document.write( "==> x^2 + 3x - 2x - 6 = 0\r \n" ); document.write( "\n" ); document.write( "==> x(x+3) - 2(x+3) = 0\r \n" ); document.write( "\n" ); document.write( "==> (x+3)(x-2)= 0\r \n" ); document.write( "\n" ); document.write( "==> x+ 3 = 0 or x - 2 = 0\r \n" ); document.write( "\n" ); document.write( "==> x = - 3 or x = 2\r \n" ); document.write( "\n" ); document.write( "Thus the x intercepts are -3 and 2 while the y intercept is -6\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Good Luck!!! \n" ); document.write( " |