document.write( "Question 62754: WHAT IS THE MAXIMUM VALUE OF y=-x^2+6x?
\n" );
document.write( "This is a quadratic with a=-1 and b=6
\n" );
document.write( "The maximum point occurs when x=-b/(2a)
\n" );
document.write( "x=-6/(-2)=3
\n" );
document.write( "When x=3, y= -3^2+6(3)=9
\n" );
document.write( "Maximum at (3,9)
\n" );
document.write( "Cheers,
\n" );
document.write( "Stan H. \n" );
document.write( "
Algebra.Com's Answer #43591 by jai_kos(139)![]() ![]() ![]() You can put this solution on YOUR website! Given an equation y = -x^2 + 6x\r \n" ); document.write( "\n" ); document.write( "Where a = -1, b = 6\r \n" ); document.write( "\n" ); document.write( "Since the a < 0, we have a maximum value.\r \n" ); document.write( "\n" ); document.write( "x = (-b /2a) = -6 /2 * -1 = 6 /2 = 3\r \n" ); document.write( "\n" ); document.write( "x = 3\r \n" ); document.write( "\n" ); document.write( "Put x =3 in equation(1), we get\r \n" ); document.write( "\n" ); document.write( "y = -(3)^2 + 6 * 3 = -9 + 18 = 9\r \n" ); document.write( "\n" ); document.write( "Therefore the maximum value is given by 9.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |