document.write( "Question 707391: 9r^2-30r+25 \n" ); document.write( "
Algebra.Com's Answer #435676 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9r%5E2-30r%2B25\", we can see that the first coefficient is \"9\", the second coefficient is \"-30\", and the last term is \"25\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"25\" to get \"%289%29%2825%29=225\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"225\" (the previous product) and add to the second coefficient \"-30\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"225\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"225\":\r
\n" ); document.write( "\n" ); document.write( "1,3,5,9,15,25,45,75,225\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-5,-9,-15,-25,-45,-75,-225\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"225\".\r
\n" ); document.write( "\n" ); document.write( "1*225 = 225
\n" ); document.write( "3*75 = 225
\n" ); document.write( "5*45 = 225
\n" ); document.write( "9*25 = 225
\n" ); document.write( "15*15 = 225
\n" ); document.write( "(-1)*(-225) = 225
\n" ); document.write( "(-3)*(-75) = 225
\n" ); document.write( "(-5)*(-45) = 225
\n" ); document.write( "(-9)*(-25) = 225
\n" ); document.write( "(-15)*(-15) = 225\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-30\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
12251+225=226
3753+75=78
5455+45=50
9259+25=34
151515+15=30
-1-225-1+(-225)=-226
-3-75-3+(-75)=-78
-5-45-5+(-45)=-50
-9-25-9+(-25)=-34
-15-15-15+(-15)=-30
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-15\" and \"-15\" add to \"-30\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-15\" and \"-15\" both multiply to \"225\" and add to \"-30\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-30r\" with \"-15r-15r\". Remember, \"-15\" and \"-15\" add to \"-30\". So this shows us that \"-15r-15r=-30r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9r%5E2%2Bhighlight%28-15r-15r%29%2B25\" Replace the second term \"-30r\" with \"-15r-15r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289r%5E2-15r%29%2B%28-15r%2B25%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3r%283r-5%29%2B%28-15r%2B25%29\" Factor out the GCF \"3r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3r%283r-5%29-5%283r-5%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283r-5%29%283r-5%29\" Combine like terms. Or factor out the common term \"3r-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283r-5%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9r%5E2-30r%2B25\" factors to \"%283r-5%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"9r%5E2-30r%2B25=%283r-5%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283r-5%29%5E2\" to get \"9r%5E2-30r%2B25\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );