document.write( "Question 62658: find the equation of the set of all points equidistant from the x axis and (4,0). \n" ); document.write( "
Algebra.Com's Answer #43452 by jai_kos(139)\"\" \"About 
You can put this solution on YOUR website!
Given a point (4 ,0) and \r
\n" ); document.write( "\n" ); document.write( "Equation along the \"x\" axis, i.e. y = 0 \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Distance between a point (x ,y) and the point ( 4 ,0) is given by\r
\n" ); document.write( "\n" ); document.write( "sqrt [ ( 0 -x) ^ 2 + ( 4 - y) ^2 ] = equal to the equation of line\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "sqrt [ ( 0 -x) ^ 2 + ( 4 - y) ^2 ] = y\r
\n" ); document.write( "\n" ); document.write( "Square on both sides of the baove equation, we get\r
\n" ); document.write( "\n" ); document.write( "[x ^ 2 + ( 4 -y) ^2] = y ^ 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Simplifying the above step we get,\r
\n" ); document.write( "\n" ); document.write( "x^2 + 16 + y ^2 - 8y = y^2\r
\n" ); document.write( "\n" ); document.write( "x ^ 2 -8y + 16 = 0\r
\n" ); document.write( "\n" ); document.write( "The above equation represent the set of all points equidistant from x -axis and
\n" ); document.write( "point ( 4, 0).
\n" ); document.write( "
\n" );