Algebra.Com's Answer #434214 by Edwin McCravy(20056)  You can put this solution on YOUR website! Find an equation of the circle with center at the origin and passing through (-3,-4) in the form of (x-A)² + (y-B)² = C where A, B, C are constants \n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "It has center (A,B) = (0,0) so we can substitute A=0 and B=0 into:\r\n" );
document.write( "\r\n" );
document.write( " (x-A)² + (y-B)² = C\r\n" );
document.write( "\r\n" );
document.write( " (x-0)² + (y-0)² = C\r\n" );
document.write( "\r\n" );
document.write( "And since it goes through (-3,-4)\r\n" );
document.write( "\r\n" );
document.write( "we can substitute x=-3, and y=-4 \r\n" );
document.write( "\r\n" );
document.write( "(-3-0)² + (-4-0)² = C\r\n" );
document.write( "\r\n" );
document.write( "(-3)² + (-4)² = C\r\n" );
document.write( "\r\n" );
document.write( " 9 + 16 = C\r\n" );
document.write( "\r\n" );
document.write( " 25 = C\r\n" );
document.write( "\r\n" );
document.write( "Now we can substitute 25 for C:\r\n" );
document.write( "\r\n" );
document.write( " (x-0)² + (y-0)² = C\r\n" );
document.write( "\r\n" );
document.write( " (x-0)² + (y-0)² = 25\r\n" );
document.write( "\r\n" );
document.write( "That's the answer showing the 0's for A and B.\r\n" );
document.write( "You can erase the 0's and just have\r\n" );
document.write( "\r\n" );
document.write( " x² + y² = 25\r\n" );
document.write( "\r\n" );
document.write( "Unless your teacher want's you to leave the 0's \r\n" );
document.write( "to show what A and B are.\r\n" );
document.write( "\r\n" );
document.write( "Edwin \r \n" );
document.write( "\n" );
document.write( "Edwin \n" );
document.write( " |