document.write( "Question 704242: factor completely\r
\n" ); document.write( "\n" ); document.write( "-15x^2-81x-30
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #433979 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"-15x%5E2-81x-30\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-3%285x%5E2%2B27x%2B10%29\" Factor out the GCF \"-3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"5x%5E2%2B27x%2B10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"5x%5E2%2B27x%2B10\", we can see that the first coefficient is \"5\", the second coefficient is \"27\", and the last term is \"10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"5\" by the last term \"10\" to get \"%285%29%2810%29=50\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"50\" (the previous product) and add to the second coefficient \"27\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"50\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"50\":\r
\n" ); document.write( "\n" ); document.write( "1,2,5,10,25,50\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-5,-10,-25,-50\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"50\".\r
\n" ); document.write( "\n" ); document.write( "1*50 = 50
\n" ); document.write( "2*25 = 50
\n" ); document.write( "5*10 = 50
\n" ); document.write( "(-1)*(-50) = 50
\n" ); document.write( "(-2)*(-25) = 50
\n" ); document.write( "(-5)*(-10) = 50\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"27\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1501+50=51
2252+25=27
5105+10=15
-1-50-1+(-50)=-51
-2-25-2+(-25)=-27
-5-10-5+(-10)=-15
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"2\" and \"25\" add to \"27\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"2\" and \"25\" both multiply to \"50\" and add to \"27\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"27x\" with \"2x%2B25x\". Remember, \"2\" and \"25\" add to \"27\". So this shows us that \"2x%2B25x=27x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%5E2%2Bhighlight%282x%2B25x%29%2B10\" Replace the second term \"27x\" with \"2x%2B25x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285x%5E2%2B2x%29%2B%2825x%2B10%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%285x%2B2%29%2B%2825x%2B10%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%285x%2B2%29%2B5%285x%2B2%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B5%29%285x%2B2%29\" Combine like terms. Or factor out the common term \"5x%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-3%285x%5E2%2B27x%2B10%29\" then factors further to \"-3%28x%2B5%29%285x%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-15x%5E2-81x-30\" completely factors to \"-3%28x%2B5%29%285x%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"-15x%5E2-81x-30=-3%28x%2B5%29%285x%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"-3%28x%2B5%29%285x%2B2%29\" to get \"-15x%5E2-81x-30\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );